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L INTRODUCTION 

Disease processes or abnormalities of the dog's coxofemoral (hip) joint are 

frequently encountered. These conditions interfere with the normal physiological function 

of the joint, cause disabling pain (Hoefle, 1974; Olmstead et al., 1983; Olmstead et al., 

1981), and may partially or totally limit joint function. 

Since 1962, many disabling conditions of the hip joint have been successfully 

treated in man with prosthetic total hip arthroplasty (THA) pioneered by Sir John Chamley. 

The success of Chamley's prosthesis in man has led to the production of a similar 

prosthesis for the dog (Leighton, 1980). 

Clinical THA in the dog has evolved from the use of the dog as a model for a device 

that could be applied to humans, into a form of treatment for the animal with debilitating 

joint disease (Nunmaker, 1985). 

TEIA has proven to be extremely effective in alleviating pain and restoring function 

for the diseased or deformed coxofemoral joint in both man and dog. However, this 

procedure in man is well known to be associated with intraoperative systemic 

complications. These systemic complications may include systemic hypotension, 

pulmonary hypertension, pulmonary fat embolism, respiratory failure, and cardiac arrest. 

Most of these systemic complications have been attributed to the possible cardiopulmonary 

toxicity of the cementing material, polymethylmethacrylate bone cement (PMM). 

The few concerns that have been published in the veterinary orthopedic literature 

regarding THA in the dog were the local complications, such as infection, and the 

mechanical failure of the procedure (Olmstead et al., 1983; Olmstead et al., 1981; Leighton, 

1980; Nunmaker, 1985; Haupton, 1985), without any mention of possible systemic and 

cardiopulmonary complications that may be encountered during the surgical procedure. 
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Whether THA procedure in a clinical setting, and/or PMM can cause similar 

systemic and cardiopulmonary complications in the dog is not known. Except for a few 

experimental studies on the dog which have been published in human orthopedic literature, 

to our knowledge, no comprehensive study has been reported in the veterinary orthopedic 

literature, addressing the possible systemic complications of THA in the dog. 

This project was designed to investigate the cardiopulmonary functional changes 

that may develop during THA in the dog by addressing three questions: 

1. What is the nature of the cardiopulmonary changes that may develop during THA in 

the dog? 

2. Does PMM have any toxic effects on the cardiopulmonary functions of the dog? 

3. What is the role of the lungs in mediating any cardiopulmonary changes that may be 

observed during THA in the dog? 
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n. LITERATURE REVIEW 

Lesions of the coxofemoral joint are fairly common in both man and dog. The 

coxofemoral joint of the dog is the most susceptible joint to injury (Hoefle, 1974). In man, 

the coxofemoral joint accounts for eight percent of disabling arthritis (Liang and CuUen, 

1984). Because most of these conditions in both man and dog are usually neither curable 

nor fatal, reduction in disability by preservation and restoration of the functional capacity of 

the damaged joint is considered major goals of management and treatment, whether by 

medical, rehabilitative, or surgical intervention. The major contribution of surgery in these 

conditions is to improve the function of damaged joints (Wood, 1976). 

At present, the most significant breakthrough for treatment of arthritic diseases of 

the hip joint, as well as other congenital deformities of the hip, is the development of the 

total hip arthroplasty surgery (Stinchfield, 1982). Total hip arthroplasty is a highly 

successful and established treatment for end-stage hip diseases (Nevitt et al., 1984; Kay et 

al., 1983; Chandler et al., 1981). THA is regarded as one of the major recent advances in 

surgery (Nevitt et al., 1984; Gordon, 1982). 

Joint replacement techniques can alleviate pain, handicap, and offer restoration of 

normal activity against which other forms of medical intervention (e.g., corticosteroids) are 

of very limited value (Nevitt et al., 1984; Crowninshield, 1982; Taylor, 1976). 

A. Total Hip Arthroplasty (THA) 

Arthroplasty means plastic surgery of a joint or joints. Total hip arthroplasty means 

total reconstruction of the hip joint utilizing surgical techniques. Total hip replacement, 

pioneered by Sir John Chamley and introduced in 1962 with the material currently in use, 

began the modem era of major joint reconstruction (Crowninshield, 1982). The severely 
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damaged hip is replaced with an artificial joint composed of a plastic acetabular component 

made of an ultra-high molecular weight polyethylene (Taylor, 1976), and a femoral 

component made of one of the following materials: stainless steel, cobalt-chromium-

molybdenum alloy, cobalt-chromium-tungsten alloy, tantalum, or titanium (Eftekhar, 

1978). The metal component is inserted into the medullary cavity of the proximal portion 

of the femur, and both components are held in the bone with methylmethacrylate bone 

cement Attempts to surgically reconstruct the hip joint were not new, they started even 

before the era of anesthetics and antiseptics. 

Gluck in 1891, in Germany, attempting to reconstruct the hip joint, fashioned an 

ivory ball-and-socket joint and fixed it to bone with nickle-plated steel screws and a cement 

composed of resin, pumic powder, and plaster of Paris (Wilcock, 1979). In 1938, Wiles 

inserted a stainless steel femoral head and an acetabulum that fit into one another precisely 

in a human patient. The acetabular component was anchored to a buttressed plate by 

screws, and the femoral component was secured to the neck of the femur by a bolt 

(Eftekhar, 1978; Wilcock, 1979). 

In 1946, the Judet brothers in France, introduced their perspex or plexiglas femoral 

head prosthesis that was made of polymethylmethacrylate (Feith, 1975). The Judet's 

contribution is significant because it proved that mechanical replacement of the hip joint 

utilizing plastic material can be tolerated in the human body with minimum tissue reaction 

(Eftekhar, 1978). 

In man, osteoarthritis of the hip joint is considered the major indication for total hip 

replacement (Wood, 1976; Kelsey, 1982). Other indications include fracture-dislocation of 

the femoral head and neck, rheumatoid arthritis, aseptic necrosis of the femoral head and 

neck, and revision of previous hip arthroplasties (Kelsey, 1982). 
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Total hip arthroplasty was introduced into veterinary surgery in 1957, when a 

prosthetic hip joint was evaluated for a probable applications in humans. Since that time, 

there have been a number of attempts to develop a prosthesis that could be successfully 

used in the dog (Haupton, 1985). These prosthesis have been made of stainless steel in 

combination with stainless steel, teflon, vinylidine fluoride resin. Unfortunately, these 

combinations of materials usually wore excessively and were not satisfactory (Hoefle, 

1974). In the 1970s, a prosthesis was developed for the dog which has been successfully 

used for total hip replacement (Haupton, 1985). 

Disabling hip dysplasia in the dog is the primary indication for implantation of a 

total hip prosthesis. Other, less frequently encountered indications, in order of frequency, 

include: primary osteoarthritis unrelated to hip dysplasia, chronic non-reducible 

coxofemoral luxations, failed excision arthroplasties, severe fractures, non-unions or 

malunions of the femoral head, neck, or acetabulum, and avascular necrosis of the femoral 

head (Olmstead et al., 1983; Nunmaker, 1985; Haupton, 1985). 

The high level of success of this procedure in the short term in man is well 

documented; the long term prognosis (ten years and beyond) is less well known (Wilcock, 

1979). The amount of pain is reduced after ±e surgery. The improvement in quality of life 

for most of the patients is remarkable. Young and middle-aged adults can frequendy return 

to work, while older adults may live a relatively active and pain-free life (Taylor, 1976; 

Kelsey, 1982). In veterinary surgery, the long term reliability of the commercially* 

•Richards Canine II Total Hip System, Richards Manufacturing Co, 

Memphis, TN. 
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available canine hip prosthesis has been established, and the benefits of treating disabling 

diseases of the dog's coxofemoral joint with THA have been clearly demonstrated 

(Olmstead et al., 1983). Elimination of pain, and marked increase in activity and endurance 

were consistentiy reported by owners (Olmstead et al., 1981). 

The three outstanding features of THA are: 

1. The unusually high quality of the functional activity obtained. 

2. The regularity with which a major human or animal affliction can be successfully 

treated. 

3. The stimulus that this hip operation represents to develop similar replacement of 

other joints (Harris, 1977). THA is a unique surgical procedure because of what it 

can do to the quality of life, however, it is not a life-saving operation 

(Wood, 1976). 

Though the operation is well established, the technical elements, such as 

biomaterials and design of the prosthesis, are changing rapidly as knowledge increases 

(Gordon, 1982). 

B. Polymethylmethacrylate Bone Cement (PMM) 

The range of application of PMM as an acrylic bone cement in orthopedic surgery is 

steadily increasing. In particular the use of acrylic cement has facilitated the solution of 

numerous problems in the fixation of artificial joints. This has made it possible to expand 

the use of artificial joints and to give many patients with an invalidating arthroplasty a better 

life (Feith, 1975). PMM was first used on a large scale in orthopedic surgery when Robert 

and Jean Judet introduced their perspex or plexiglas femoral head prosthesis in 1946. The 

interest in PMM as a bone cement was revived when Chamley stabilized his first 

hemiarthroplasty of the hip with cold-curing PMM. Shortly after, Chamley (1961) and 
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McKee and Farrar (1966), both developed a total hip prosthesis that they anchored with the 

acrylic cement. 

Since the early seventies, this bone cement has become an indispensable aid in 

orthopedic surgery. The method of fixation which fills the space between the prosthesis 

and previously prepared bone defects with malleable plastic setting in situ was 

revolutionary. It was therefore not until several years later that the concept of relying on 

the strength of the cement to support the prosthesis rather than having it rest on the bone, 

was generally accepted. Acrylic cement greatly supported the era of total joint replacements 

(Feith, 1975). 

Other uses of PMM include its use in plastic surgery of the nose and orbital region; 

in thoracic surgery as plombage (therapeutic deflation of the lung); in cranial surgery to fill 

defects in the skuU; and in orthopedic surgery to stabilize pathological fiactures (Klein, 

1974). PMM has been used successfully to fill large defects in long bones after massive 

tumor resection, eliminating the problems associated with bone grafting (Baddeley and 

Cullen, 1979). In ophthalmology, PMM is utilized to manufacture contact lenses, 

intraoccular lenses, and repair of lacrimal ducts; in otology to replace ossicles; and in 

urogenital surgery for plastic cosmetic replacement of testicles. 

1. Chemical and physical characteristics of PMM 

PMM is a plastic material composed of macromolecules. The material is prepared 

for implantation by mixing a polymer powder with a liquid monomer that consists mainly 

of methylmethacrylate. The powder contains polymethylmethacrylate in granular form; the 

polymerization activator, benzoylperoxide, and the chemical agent, dimethylparatoluidine 

(DPT). The liquid portion is the methylmethacrylate monomer whose chemical 

configuration is similar to chloroform. It is a highly volatile, potent lipid solvent, and toxic 
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fluid with a characteristic penetrating odor, to which the polymerization inhibitor, 

hydroquinone, has been added. 

Each chemical ingredient plays an important role in transforming the powder and 

liquid into a usable state. Hydroquinone prevents slow and spontaneous polymerization of 

methylmethacrylate monomer into a solid resin state, and rapid polymerization is induced 

by the activator, benzoylperoxide. In the presence of this activator, physical factors such 

as heat and ultraviolet light can initiate polymerization. 

In the case of self-curing aciylic cement, which is the type of methylmethacrylate 

used in surgical procedures, the polymerization reaction is initiated chemically by the agent 

DPT. The chemical reaction is exothermic. This sudden response is associated with 

"hardening" of the cement, and it produces temperatures varying from 80°C to 100°C 

(Klein, 1974). This heat is released during the change of the high-energy unstable 

monomer molecule to the low-energy stable polymer, to the extent that 100 grams of 

methyhnethacrylate monomer produce 13 kilocalories on polymerization (Jefferiss et al., 

1975). Studies in dogs showed that PMM plug temperatures ranged between 95°C and 

107°C and that temperatures at the cement-bone interface ranged from 50°C to 95 °C. 

Curing temperatures therefore are high enough to cause bone necrosis (Schatzker et al., 

1975). 

2. Mechanical fixation and load transmission by PMM 

Acrylic cement has no adhesive property to steel or wet bone. When used as a stiff 

paste or dough, it has space-filling properties. Aciylic cement can fill spaces between the 

stem of the prosthesis and the endosteal surface of the bone. The cement is forced down 

the track of the medullary canal as a stiff dough and the insertion of the point of the tapered 

stem of the prosthesis expands the stiff dough and forces the cement into the cancellus 
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lining of the marrow space. In this way the cement makes an accurate cast of the lining of 

• the canal with strong bone trabeculae indenting it, and with soft cancellus spaces being 

invaded by it When the cement has hardened, the prosthetic stem and the sheath of cement 

function as one unit (Chamley, 1970). By interdigitation of the cement into the bone 

during cyclic loading and unloading of the transmission of body weight, the whole surface 

of the interior of the bone is subjected to the load, thus preventing stress concentration at 

any given area of contact Therefore shearing forces between prosthesis and bone are 

reduced by the absence of friction between the two surfaces (Eftekhar,1978). 

3. Side effects of methylmethacrylate monomer 

It is known that PMM bone cement itself and the method of its intramedullary 

implantation have a distinct influence on the surrounding tissues and on various 

physiological functions of the body. As a result, several clinical and experimental studies 

have been carried out regarding the unfavorable side effects of the acrylic cement. 

Most of these studies have focused on the causes of systemic physiological 

disorders such as systemic hypotension and pulmonary fat embolism during introduction of 

the acrylic cement into the femoral medullary canal. 

Generally, there is an agreement that all these side effects are due to the chemical 

composition of the monomer component of PMM, its metabolites, to the exothermic 

reaction during polymerization, and to the method of implantation in the medullary cavity 

(DeWijn et al., 1975). 

a. Pulmonary system Methylmethacrylate is known to be a powerful irritant. 

Inhalation of its vapor produces cellular responses and irritation of the respiratory 

membranes of experimental animals (Dichman, 1941; Tansy and Kendall, 1979), and 

sometimes death due to respiratory failure (Kessler et al., 1977; Spealman et al., 1945). 
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An intravenous injection of the monomer in sheep causes a dose-dependent increase in 

pulmonary microvascular permeability, and transient pulmonary hypertension after high 

doses (Fairman et al., 1984). Also in dogs, intravenous injection of the monomer causes 

pulmonary hypertension of transient nature (d'HoUander et al., 1979). 

McLaughlin et al. (1973) found that a dose of intravenously injected monomer of at 

least seventy-five milligrams per kilogram body weight was required to depress arterial 

Pa02 and elevate PaC02. This dose is about thirty to forty times larger than that which 

probably reaches the blood during clinical THA in man. 

Similar findings were reported by Modig et al. (1975a). They concluded that the 

monomer in concentrations similar to those reported in man during THA, has no effects on 

the cardiopulmonary functions. Furthermore, they attributed the cardiopulmonary changes 

observed during THA to efflux of thromboplastic products from crushed marrow tissue 

into the blood stream during impaction of the femoral prosthesis. 

b. Cardiovascular svstem Impairment of cardiovascular and pulmonary 

function during the insertion of orthopedic prosthesis fixed with acrylic cement is 

adequately described in the literature. To explain the cardiovascular dysfunction, the 

majority of authors pointed out the role of pulmonary embolism, frequentiy encountered 

following THA. They also suggested the hypothetic systemic toxicity of resorbed 

methyhnethacrylate monomer in clinical situation (d'HoUander et al., 1979). 

Ellis and Mulvein (1974) compared the cardiovascular effects of intravenous 

injection of pure monomeric methylmethacrylate with those of the whole liquid compound 

in the dog. By injecting enough material of both compounds to reach blood level of 40-45 

mg/100 ml of blood, both compounds produced a fall in mean arterial blood pressure, a 

rise in the heart rate, and an increase in cardiac output without significant changes in the 
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central venous pressure. They concluded that the cardiovascular disturbance is caused by 

the moncmeric methylmethacrylate alone rather than by any of the other constituents. 

In a similar study, Peebles et al. (1972) compared the cardiovascular effects of the 

monomeric methylme±acrylate liquid with the polymeric methylmethacrylate powder in the 

dog. Intravenous injection of a suspension of the powder failed to produce any 

cardiovascular changes, while injection of 0.25 ml (11.2 mg/100 ml blood) and 0.5 ml 

(22.4 mg/100 ml blood) of the monomeric liquid produced a significant fall in ±e mean 

arterial pressure, an increase in the pulse rate and cardiac output, with no changes in the 

central venous pressure. They concluded that the main underlying mechanism seemed to 

be peripheral vasodilation produced by the monomer. 

Homsy et al. (1967) reported that intravenous administration of low doses of 

methylmethacrylate monomer (5-10 mg/100 ml blood) produced an immediate but minor 

blood pressure decrease. Doses as high as 50-125 mg/100 ml blood were necessary to 

induce a significant and acute cardiovascular depressant effects. They concluded that the 

compound did not seem to have any overt acute toxicity with its clinical use as seating 

compound for orthopedic implants. Similar findings were reported by Modig et al. 

(1975a). 

Since THA is usually associated with significant blood loss, McMaster et al. (1974) 

studied the significance of blood volume deficit as a potentiator of the systemic blood 

pressure lowering effect of methylmethacrylate monomer. They found that graded blood 

volume depletion potentiated the systemic blood pressure lowering effect of intravenously 

injected monomer in the dog. Their data supported the previously reported mechanism of 

action of the compound, which is peripheral vasodilation without myocardial depression. 
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Berman et al. (1974) found that peripheral resistance and blood pressure were 

decreased in both normovolemic and hypovolemic dogs after an intravenous injection of 

methylmethacrylate monomer. However, cardiac output increased in normovolemic dogs 

and decreased in the hypovolemic ones. 

d'HoUander et al. (1979,1976) found that the cardiovascular depressant effect of 

intravenously injected methylmethacrylate monomer in the dog is dose-dependent 

Furthermore, the blood levels of the compound associated with cardiovascular depression 

in dogs were about 10 to 100 times higher than that reported in man after total hip 

arthroplasty. They concluded that the dose-dependent toxic effect of the product could not 

be responsible for the cardiovascular changes seen during total hip arthroplasty. 

Yasuda and IwatsuJd (1975) studied the direct effect of methylmethacrylate 

monomer on the isolated dog heart muscle, they found that the compound exerted a direct 

negative inotropic effect on the myocardium. Wong et al. (1977) conducted a similar study 

on the rabbit's heart and found that the compound produced a dose-dependent depression 

of the left ventricular contractility, and a depression of the spontaneous heart rate. 

Ramanathan et al. (1983) found that application of the monomer to the rabbit's aorta 

in vitro direcdy inhibited the vascular smooth muscle, they proposed that the action of the 

compound may be related to its effect on the intracellular calcium and/or contractile 

proteins. 

c. Cellular immune response Deep infection after total hip arthroplasty 

remains a serious problem in both human and veterinary orthopedic surgery, mainly 

because its disastrous consequences. This problem has stimulated several investigators to 

examine the possibility that methylmethacrylate may disturb host immune function and 

render tissues more susceptible to infection. Panush and Petty (1978a) found an 
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immunosuppressive effects of methylmethacrylate upon human lymphocytes in vitro. Petty 

(1978a) found that meihylmethaciylate significantly decreased the ability of human 

polymorphonuclear leukocytes to phagocytose and kill bacteria in vitro. The result 

indicated that the confound impaired the killing property more than the phagocytic activity 

of the leukocytes. 

Welch (1978) found that the liquid monomer reduced the phagocytic activity of 

mice peritoneal macrophages. Also, the monomer demonstrated cytotoxic effect to blood 

cells in vitro, with more damage sustained by phagocytic polymorphonuclear neutrophils 

than lymphocytes. 

Heggers et al. (1978), using experimentally sensitized guinea pigs, proposed that 

methylmethacrylate was capable of evoking an immune response in previously exposed 

animals. Nicastro et al. (1975) found that methylmethacrylate at various curing stages, 

caused decreased phagocytosis and hexosmonophosphate shunt activity in rabbit alveolar 

macrophages. 

Petty (1978b) demonstrated that methylmethacrylate depressed the formation of the 

chemotactic factors in normal human serum when it was added to the serum prior to its 

activation. However, the compound did not affect the chemotactic activity of either the 

bacteria or the serum if the serum had been activated prior to its exposure to the compound. 

d. Occupational hazards in orthopedic surgery The liquid part of PMM bone 

cement contains methylmethacrylate monomer, a polymerization accelerator, 

dimethylparatoluidine, and the self-polymerization inhibitor hydroquinone. The monomer 

and its additives are potential sensitizers. The powder part contains methylmethacrylate 

polymer, and the polymerization inhibitor benzoylperoxide. The polymer itself has no 

allergenic potential, while benzoylperoxide is a sensitizer. However, when exposure to 
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methylmethacrylate products induces sensitization, this is rarely due to the additives but 

mainly blamed on the liquid monomer (Eftekhar, 1978; Fregert, 1983). When the two 

components are mixed together (the liquid and the powder) during THA, the low molecular 

weight liquid monomer-polymerizes to the high molecular weight polymer. The 

polymerization, however, is not complete, allowing spontaneous release of the monomer 

from the hardened cement for some time. 

Methylmethacrylate monomer penetr ates intact surgical rubber gloves in a few 

minutes, and the penetration of acrylates through the gloves continues even after the direct 

contact has ceased (Fregert, 1983; Fries et al., 1975). Fries et al. (1975) reported several 

cases of allergic contact dermatitis in orthopedic surgeons handling acrylic cement Also, 

inhaled methylmethacrylate vapor may cause headache and irritation of the eyes and the 

respiratory tract in the operating room personnel (Fregert, 1983). 

e. Local tissue effects Acrylic bone cement may cause local tissue injury in at 

least two ways: thermally, through the amount of heat produced by the polymerization 

process, which depends on the amount of cement used, and chemically, through the 

amount of residual monomer leached out from the cement to the surrounding tissues during 

the polymerization process. The magnitude of monomer leak depends on the stage of 

polymerization of the cement and the surface area of the cement 

Clinically, the thermal damage may be minimized by using thin layers of the cement 

to anchor the prosthesis, and diverting the heat of polymerization by the cold metal femoral 

stem. The chemical damage may be partially reduced by allowing most of the 

polymerization process to take place outside the body, before incorporating the cement with 

the raw surface of the bone. 
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11 Effects on soft tissues Linder and Romanus (1976) demonstrated 

that polymerizing acrylic bone cement in contact with living tissue caused severe and 

irreversible microcirculatory changes in the hamster's cheek pouch, even in the absence of 

thermal factors and pressure on the tissue. Linder (1976) studied the effect of the monomer 

on the microvascular system of the rabbit's ear, and demonstrated that severe tissue 

reaction and necrosis always followed its application. 

2) Effects on bone The reactions of bone to implanted 

methylmethacrylate determine to a large extent the success or failure of the prosthesis and 

its function (WUlert et al.,1974). 

Bone necrosis adjacent to self curing polymethylmethacrylate is a matter of accepted 

fact Among the possible causes are mechanical and vascular damage from the preparation 

of the bone cavity, chemical damage from the monomer and free radicals in the cement 

dough, and thermal damage from the heat of polymerization, occurring in this order 

(Jefferiss et al., 1975). 

WiUert et aL (1974) were able to distinguish three different phases of bone reactions 

to implanted acrylic cement: 

1. The initial phase or the postoperative tissue damage lasts up to three weeks 

postoperatively, and is characterized by a layer of necrotic tissue and fibrin up to 

three millimeters thick and located at the inner surface of the implant bed, 

immediately adjacent to the cement. 

2. The second phase or repair of tissue damage lasts from three weeks to two years 

postoperatively, and is characterized by remodeling, reinforcement, or replacement 

of the necrotic bone, either by apposition of newly formed lamellar bone or by 
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osteoplastic metaplasia. The replacement of the necrotic bone is usually completed 

after two years. 

3. The final phase or formation of the permanent implant bed. It lasts one to two years 

postoperatively, and is characterized by the formation of a thin connective tissue 

membrane (0.1 to 1.5 millimeter thick) surrounding the cement. Minimum bone 

remodeling continues during this phase. 

Pedersen et al. (1983) demonstrated a dose-dependent depression of 

methylmethacrylate monomer on bone turnover in vitro. This effect may initially be 

augmented by the thermal damage induced by polymaization of the cement. These two 

factors, separate or combined, may play a role in the pathogenesis of the postoperative 

loosening of the surgical implants. 

4. Metabolism of methylmethacrylate in the body 

It is known that methykne±acrylate monomer is slowly leached out of the 

polymerized acrylic cement into the surrounding tissues for some time following 

implantation. Petty (1980) found low concentrations of methylmethacrylate monomer in 

cancellous bone adjacent to the cement, and that they were sustained only for a brief period 

of time. Homsy et al. (1972) in simulating canine total hip arthroplasty, were able to detect 

methylmethacrylate monomer in central venous and aortic arch blood within one minute 

after implantation. The peak level of the monomer of about 1 mg/l(X) ml blood was 

reached within three minutes on the venous side of the lungs, and about one third of this 

level on the arterial side. In a similar work, McLaughlin et al. (1973) were able to detect a 

venous blood monomer level of 3.5 mg/100 ml blood, which corresponds to only 0.5 per 

cent of the total amount of implanted monomer. However, they could not detect any 

monomer in the arterial blood. This may indicate the active role of the pulmonary system 
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as a possible major metabolic or excretory system for the monomer and/or its metabolites 

(Rijke and Johonson 1977; Bart and Hathway, 1977; McLaughlin et al., 1973). 

Bright et al. (1972) reported a concentration of 1 mg/100 ml blood or less of 

monomer in human patients undergoing THA, without any significant ECG or blood 

pressure changes. 

Corldll et al. (1976) found that methylmethacrylate was rapidly hydrolyzed into 

methacrylic acid and methanol in human blood in vitro. They also demonstrated a half life 

of20-40 minutes of methylmethacrylate in the blood. McLaughlin et al. (1973) could not 

detect any monomer in venous blood nineteen minutes after injection. 

Crout et al. (1979) found that methylmethacrylate was also hydrolyzed into 

methacrylic acid and methanol in patients undergoing THA. They could not find any 

correlation between changes in the concentrations of methylmethacrylate and methacrylic 

acid, and the hemodynamic changes observed during the procedure. They suggested that 

methacrylic acid is converted to coenzyme A ester through the action of a non-specific 

enzyme. The conversion of methacrylic acid into the coenzyme A ester, would permit 

methacrylic acid to enter a normal catabolic pathway which leads, via the tricarboxylic acid 

cycle, to carbon dioxide. Their view was supported by the finding of Bart and Hathway 

(1977), that over 80% of an administered dose of labeled methylmethacrylate in the rat, 

was respired as carbon dioxide within 5-6 hours. 

Although there have been some problems and complications with the use of acrylic 

cement in orthopedic surgery, acrylic cement has been the foundation on which the success 

of total hip arthroplasty has rested. In general, acrylic cement has demonstrated excellent 

physical characteristics, adequate tissue compatibility, and minimal toxicity when applied 
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properly. Its relative inertness, mechanical properties, and ease of applicability have 

guaranteed its popularity and wide acceptance (Feith, 1975). 

C. Systemic Effects of THA in Man 

1. Cardiopulmonary complications 

The use of methylmethacrylate bone cement in the fixation of orthopedic implants 

has been one of the great advances in orthopedic surgery in the last two decades. 

However, several problems exist with its use, particularly after impaction of the femoral 

component of the prosthesis (Alexander and Barron, 1979). 

Elective orthopedic procedures such as THA performed on patients of advanced age 

pose a particular problem in management. There is a greater incidence of deep venous 

thrombosis and pulmonary embolism in this than any other group of swgical patients 

(Barber et al., 1977). Venous thromboembolic disease is the most frequent and serious 

complication in the postoperative period after THA (Harris et al., 1975; Eftekhar et al., 

1976; Hampson et al., 1974; Johnson et al., 1977). The incidence of deep vein thrombosis 

after THA ranges from 30 to 70 per cent, with 10 per cent incidence of pulmonary 

embolism, and overall mortality rate of 2 per cent due to massive pulmonary emboli 

(Barber et al., 1977; Fini et aL, 1985; Jennings et al., 1976; Belch et al., 1982; McManus, 

1976; Coventry et al., 1974; Sautter et al., 1983; Hirsh, 1984). ffigher mortality rate due 

to massive pulmonary emboli after THA, ranging from 5 to 8 per cent have also been 

reported (Pini et al., 1985; Stulberg et al., 1982). There is substantial evidence that the 

thrombi that form in the veins of the thigh or iliac region are the principal sources of major 

pulmonary emboli (Harris et al., 1976; Kettunen et al., 1973). 

Pulmonary fat, bone marrow, and air emboli (pulmonary embolism) have been 

confirmed in autopsy specimens fi-om patients dying during or shortly after THA 
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(Alexander and Barron, 1978; Modig et al., 1975b; Dandy, 1973; Kepes et al., 1972; 

Cohen and Smith, 1971). However, Dandy (1973) reported two deaths with confirmed 

pulmonary fat embolism, associated with Thompson arthroplasty without PMM. 

The possibility of sudden death in the immediate postoperative period from 

pulmonary embolism is a continued source of anxiety to aU surgeons engaged in hip 

surgery. In spite of the intensive effort that has been directed toward this problem, no clear 

way of avoiding this complication has emerged (Kay, 1973). 

Arterial hypoxemia particularly after insertion of the femoral prosthesis has been 

reported by several investigators (Kallos, 1975; Park et al., 1973; Koide et al., 1974; 

TumbuU et al., 1974; Alexander and Barron, 1978; Modig et al., 1975b; Modig and 

Molmberg, 1975; Modig, 1976). 

Other pulmonary complications that have also been reported are pulmonary capillary 

leaks (Safwat and Dror, 1982), an increased venous admixture (Tumbull et al., 1974; 

Modig and Molmberg, 1975; Modig, 1976), pulmonary hypertension, and elevated 

pulmonary vascular resistance (Modig and Molmberg, 1975; Rinecker, 1980). 

Contrary to previously reported pulmonary complications, Hughes et al. (1972) 

reported no evidence of pulmonary dysfunction after THA with PMM in man. Gooding et 

al. (1981) found no significant changes in pulmonary hemodynamics or gas exchange after 

THA with PMM. 

The cardiovascular complications associated with THA are numerous. Brown and 

Pormley (1982) reported second-degree atrioventricular block after application of PMM 

during THA. Cardiac arrest has been reported by several authors, particularly after 

inserting the femoral prosthesis and PMM into the reamed femur (Dandy, 1973; Kepes et 

al., 1972; Cohen and Smith, 1971; Kirman, 1973; Powell et al., 1970; DeAngelis and 
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Jaques, 1973; Nice, 1973). In most of the cardiac arrest cases, pulmonary embolism was 

confirmed at autopsy (Dandy, 1973; Kepes et al., 1972; Cohen and Smith, 1971). 

The most common cardiovascular complication that was reported during THA was 

systemic arterial hypotension (Wong et al., 1977; Eftekhar et al., 1976; Koide et al., 1974; 

Alexander and Barron, 1978; Modig and Molmberg, 1975; Dandy, 1973; Newens and 

Volz, 1972; Philips et al., 1971; Thomas et al., 1971; Schuh et al., 1973; Kim and Ritter, 

1972). Myocardial infarction, congestive heart failure, and cardiac arrhythmias have also 

been reported as complications of THA (Eftekhar et al., 1976; Coventry et al., 1974). 

The cardiopulmonary complications associated with THA in man have been 

attributed to one or more of the following factors: 

1. Toxicity of the monomer absorbed into the systemic circulation (Kirman, 1973; 

Powell et al., 1970; Nice, 1973; Philips et al., 1971; Kim and Ritter, 1972). 

2. Fat embolism and release of thromboplastic products into the systemic circulation 

(Alexander and Barron, 1978; Modig et al., 1975b; Rinecker, 1980; Cohen and 

Smith, 1971; DeAngelis and Jaques, 1973; Nice, 1973; Newens and Volz, 1972; 

Philips et al., 1971). 

3. Old age and pre-existing cardiopulmonary disease (Koide et al., 1974; Alexander 

and Barron, 1978; Powell et al., 1970; DeAngelis and Jaques, 1973; Nice, 1973; 

Schuh et al., 1973). 

4. The massive surgical intervention and severe musculoskeletal trauma associated 

with THA (Modig and Molmberg, 1975; DeAngelis and Jaques, 1973; Convery et 

al., 1975). 

5. Severe blood loss, aggressive blood transfusion, and replacement fluids (DeAngelis 

and Jaques, 1973; Kim and Ritter, 1972). 
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6. The possible synergistic effect of the monomer and the volatile halogenated 

anesthetics (Nice, 1973; Newens and Volz, 1972). 

7. The anesthetic used in the procedure, the anesthetic technique, and the duration of 

anesthesia (Modig, 1976; Zawadski et al., 1976). 

2. The impact of surgical trauma induced during THA 

The operative procedure of THA involves a considerable amount of trauma to both 

soft tissues and bony structures. Hemorrhage, soft tissue damage, laceration of bone 

marrow tissue under high pressure, and introduction of a foreign material such as PMM 

and prosthesis into living tissue, are all encountered (Modig et al., 1974). 

The major traumatic event in THA is the reaming of the acetabulum and the femoral 

medullary canal to prepare a bed for the prosthetic implants. Reaming of the medullary 

cavity has been an accepted technique in orthopedic surgery for many years, however 

certain risks are involved with this procedure. 

The medullary cavity is essentially a low pressure system with thin walled arteries, 

veins, and sinuses (Barron, 1979). After reaming, most of the medullary blood vessels are 

completely destroyed, with the resultant increase in the intramedullary pressure 

(Danckwordt-LilUestrom and Lorenzi, 1970). Insertion of PMM and the femoral 

prosthesis in the reamed medullary cavity further increase the intramedullary pressure and 

values of 290 to 900 torr and higher of intramedullary pressure have been recorded (Kallos 

et al., 1974; Tranzo et al., 1974; Hallin et al., 1974). 

Such high intramedullary pressure forces the marrow contents of crushed tissue, 

air, fat, and thromboplastic products, into the opened vessels in the Haversian and 

Volkmans canals, and via the venous drainage system of the femur into the systemic veins, 

the right heart (Barron, 1979; Danckwordt-LiUiestrom and Lorenzi, 1970; Kallos et al.. 
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1974; Hallin et aL, 1974), and finally, they are trapped in the pulmonary capillaries, 

causing pulmonary microembolism (Modig et al., 1974; Barron, 1979). 

The medullary contents have been reported to appear in the lung field within 10 to 

120 seconds after insertion of PMM and the femoral prosthesis (Kallos et al., 1974). The 

presence of medullary contents, rich in thromboplastic products (Modig et al., 1973), in the 

pulmonary circulation could cause platelet aggregation and fibrin deposition in the 

pulmonary capillaries. The release of thromboplastic products into the systemic circulation 

may be involved in producing the caidic^ulmonaiy complications observed after insertion 

of PMM and prosthesis into the medullary cavity (Modig et al., 1975b; Modig et al., 1974; 

Hallin et al., 1974). 

3. Effects of THA on blood coagulation 

Several investigators have reported significant changes in several blood clotting 

factors following THA in man. The correlation between such changes and the development 

of postoperative deep vein thrombosis and subsequent pulmonary embolism was high. 

Houghton et al. (1978) reported significant increase in factors n, V, and Vm in 

blood obtained &om the operated limb compared to blood obtained firom the systemic 

circulation. These changes were attributed to damage to vessel wall after forceful 

manipulation, sustained retraction, and prolonged recumbency while supine. Venostasis, a 

major contributing factor to hemostasis disturbance, occurs during dislocation of the hip 

and is probably magnified by retraction to expose the acetabulum. Venous injury following 

THA has been confirmed experimentally in the canine model of THA (Stewart et al., 

1983). 

Gitel et al. (1979) found that antithrombin IE decreased significantiy following 

THA, which indicates thrombin activation and subsequent activation of the coagulation 
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cascade. They attributed such activation to vessel wall injury and venostasis as well as 

liberation of tissue thromboplastin fiom traumatized tissue and fat cells during the intensive 

surgical manipulation. 

Walsh et al. (1976,1974) reported significant increase in platelet coagulant 

activities following THA. These activities are capable of initiating the intrinsic coagulation 

pathway through two alternative mechanisms: a) by protecting active clotting factors from 

inactivation by their natural inhibitors and b) by catalyzing subsequent coagulation 

reactions. 

Aaron et al. (1978) found a progressive rise in the levels of fibrin degradation 

products following THA, and this rise was highly predictive of subsequent development of 

deep vein thrombosis. At the same time, antithrombin HI levels declined while levels of 

soluble fibrin complexes were elevated. 

D. The Mechanism of Pulmonary Damage 

Following Physical Trauma 

Physical trauma, particularly that of the musculoskeletal system, can induce 

pulmonary damage and deleterious effects to pulmonary functions through several 

mechanisms: 

1. Spontaneous formation of blood-borne microaggregate 

It has been recently shown that trauma is associated with spontaneous formation of 

blood-bome microaggregates and the amount of microaggregate was correlated well with 

the severity of the trauma. These microaggregates consist of fibrin, injured platelets, 

cellular debris, and bacteria. These microaggregates would represent a phagocytic load to 

the reticuloendothelial system, resulting in opsonic deficiency or consumption 
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They exert their deleterious effect on the lung and other end organs via microembolization 

(Rosoff et al., 1971). 

2. Pulmonary fat embolism 

Pulmonary fat embolism is one of the most serious pulmonary complications of 

trauma (Meek et al., 1972; Emson, 1958; Peltier, 1969). It is a pathological condition in 

which the smaller blood vessels of the lungs are occluded by intravascular fat globules 

(Ross, 1970; Meek et al., 1972). It is estimated that 90-100 per cent of patients dying 

shortly after sustaining fractures, have fat emboli in their lungs (Ross, 1970), and a good 

correlation was established between the extent of the bone injury and the appearance of the 

fat in the lungs (Peltier, 1965; Jacobs and McLain, 1979). These fat emboli produce 

significant damage to the alveolar-capillary membrane (Peltier, 1969). 

In orthopedic surgery, pulmonary fat embolism is a well recognized complication, 

and is considered as a major cause of mortality (Miller et al., 1983; Lachiewitz and 

Ranawat, 1981). Thus, it appears that histological fat embolism occurs after almost every 

bone fracture, deliberate or accidental. 

Several types of bone injuries can lead to pulmonary fat embolism: i) gross 

fractures of bones, particularly long bones; ii) concussion or jarring without obvious 

fractures; and iii) orthopedic surgery and manipulations (Scully, 1956). 

a. Genesis of Post-Traumatic Pulmonarv Fat Genesis of post-traumatic 

pulmonary fat embolism can be explained by two theories: 

1) The Mechanical Theory It states that macroglobules of fat, 

originating in the bone marrow injured by fracture, are released directly into the venous 

blood stream and lodged in the pulmonary capillaries. For the mechanical theory to 

operate, three conditions should be available: i) ruptures of envelopes of fat, ii) tearing of 
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veins, and iii) local increase in the pressure that forces the fat into the venous system (Meek 

et al., 1972; Talucci et al., 1983; Serota, 1984; Scully, 1956; Emson, 1958). In bones, 

anatomical fixations of the veins to the walls of the Haversian canals are believed to prevent 

their collapse and to favor admission of fat into the systemic venous circulation (Serota, 

1984; Scully, 1956), and pulmonaiy fat emboli could be detected within seconds after 

injury (Peltier, 1965; Emson, 1958). 

2) The Biochemical Theory It proposes that the stress of trauma 

causes the release of catecholamines (Serota, 1984; Peltier, 1969), which mediate 

mobilization of firee fatty acids fiom adipose tissue and induce coalescence of chylomicrons 

and other serum lipids. Fat microglobules are then formed and, as in the mechanical theory 

must reach the lung via the venous circulation (Meek et al., 1972; Talucci et al., 1983; 

Serota, 1984; Scully, 1956). 

Once the fat reaches the lung it is not irreversibly trapped in the pulmonary 

capillaries, but rather it circulates between the pulmonary and systemic circulation, 

however, most of the fat is located in the pulmonary vessels. Fat emboli may reach the 

systemic arterial circulation, embolizing more visceral organs, via three different pathways: 

i) pulmonary arteriovenous shunts resulting from postembolic pulmonary hypertension 

(Serota, 1984), ii) the postembolization communications that develop between the 

pulmonary and bronchial circulations, and iii) a patent or non-functional foramen ovale that 

starts to function due to development of postembolic right heart hypertension. 

b. Mechanism of pulmonary iniurv following fat embolism The 

consequences of pulmonary fat embolism are dependent on the extent of pulmonary 

vascular obstruction, reflex humoral factors, and the pre-embolic condition of the vessels. 

Degranulation of platelets coating the embolus will result in the release of vasoactive 
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substances causing local bronchial and pulmonary vasoconstriction, loss of surfactant and 

the development of atelectasis, increased pulmonary vascular resistance with subsequent 

right heart failure and cor pulmonale, and finally ischemic infarction of the lung tissue 

(Peterson and Goldman, 1985). Disruption of the alveolar-capillary membrane as well as 

extensive cytotoxic effects of Type I and n alveolar pneumocytes have been reported 

following pulmonary embolism (Peltier, 1969). Fat emboli can induce puhnonary injury 

by different mechanisms: 

1) Mechanical obstruction of pulmonary vessels Simple mechanical 

obstruction of the pulmonary capillaries with fat globules following embolism (Peltier, 

1969) will result in reduction in the cross sectional area of the pulmonary vasculature. The 

immediate results of such an obstruction are reduced cardiac output and tissue perfusion, 

increased pulmonary arterial pressure and pulmonary vascular resistance, hypocapnic 

bronchial constriction, ventilation/perfusion inequality, and finally hypoxemia due to 

opening of pulmonary arteriovenous shunts. Furthermore, neutral fat microglobules might 

accumulate fibrin and platelets causing microthrombi to form in the lungs, which would 

mediate the activation of the fibrinolytic system, with subsequent release of vasoactive 

amines and prostaglandins, resulting in local vasoconstriction and fiirther obstruction to the 

pulmonary blood flow (Serota, 1984). Mechanical blockage of the pulmonary capillaries 

will lead to local hypoperfusion and alveolar cell injury due to lack of nutritional blood 

supply (Blaisdell et al., 1970; Peltier, 1969). Production of surfactant by these damaged 

cells will be compromised and atelectasis is a probability. Moreover, extravasation of 

protein into the alveoli fix>m the damaged capillaiy wall may also inhibit surfactant activity. 

Mechanical obstruction and subsequent release of vasoactive mediators into the pulmonary 

circulation will result in pulmonary hemodynamic disturbances characterized by a widely 
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varying microcirculatory flow. Following pulmonary embolism, a widely dilated 

metarteriole-capillary networks interspersed with vasoconstricted networks are created. 

Local and generalized vasoconstriction is mediated by different neurohumoral mechanisms, 

and is opposed by vasodilation mediated by metabolic factors. The balance between the 

dominating vasoconstriction and the pronounced vasodilation at the level of metarteriole, 

creates uneven vasomotor patterns and uneven blood flow. These flow maldistributions 

are made worse by red cell and platelet aggregates (Shoemaker et al., 1980). 

Stasis in the microcirculation secondary to the initial emboli may set the stage for 

further thrombosis because of endothelial cell damage distal to the emboli, or 

thromboplastines flushed from peripheral circulatory beds (BlaisdeU et al., 1970). 

2)  Hydrolysis of neutral fats in the lung and release of free fatty acids 

Blood lipids exist in the form of triglycerides, cholesterol, phospholipids, and free fatty 

acids (Gurd, 1970). The effect of trauma on fat metabolism is complex and not fully 

understood (Bergentz, 1968). Following severe trauma, there is a significant increase in 

the amount of circulating neutral fat This fat is then hydrolized and elevated levels of 

circulating free fatty acids can be detected (Parker et al., 1974). Two extra sources of free 

fatty acids exist following trauma. First, the hydrolysis of embolic neutral fat in the 

pulmonary vascular bed through the action of pulmonary lipase. Pulmonary lipase is 

formed and released by the metabolically active alveolar pneumocytes (Peltier, 1969). 

Pulmonary lipases will act on those lipid layers of the embolic fat which are immobilized 

within the capillaries, with subsequent increase in fr^ fatty acids concentrations at the 

interface between those emboli and the capillary wall. The resulting injury to the capillary 

wall will lead to extravasation of fat globules into the alveolar spaces (Fonte and 

Hausberger, 1971). The second source of circulating free fatty acids following trauma is 
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the free fatty acids mobilized 6om the systemic depots as a reaction to the stress of injury 

and the release of catecholamines (Frayn et al., 1985; Fonte and Hausberger, 1971; Serota, 

1984; Mason et al., 1971; Bergentz, 1968; Parker et al., 1974; Peltier, 1969). 

Catecholamines activate the adenyl cyclase system which catalyzes the inactive lipase to 

active lipase. Hie active lipase then hydrolyzes depots triglycerides to free fatty acids and 

glycerol These free fatty acids are originally mobilized from the body fat depots to meet 

the energy demands following trauma (Baker et al, 1971). 

Several reports (Alexander and Bairon, 1979; Armstrong et al., 1979; Barron, 

1980) have indicated that THA in man is associated with elevated levels of free fatty acids 

and lipase, particularly in those patients developing postoperative deep vein thrombosis and 

pulmonary embolism. 

The mechanism by which free fatty acids induce tissue injury is not well 

understood. However, it was postulated that the toxic effect of free fatty acids may be 

caused by displacement of lipoproteins from the cell walls and their subsequent destruction, 

or by removal of calcium from cell walls (Fonte and Hausberger, 1971). 

Elevated levels of serum free fatty acids have been shown to cause pulmonary 

capillary congestion and pulmonary edema, an abnormal thickening of the alveolar-capiUary 

membrane, and infiltration of the alveolar septa by polymorphonuclear leukocytes (Serota, 

1984; Mason et al., 1971). 

High levels of free fatty acids have long been known to accelerate blood clotting 

mechanism by activating platelet aggregation and Hageman factor (factor XE) (Mason et 

al., 1971; Baker et al., 1971). This effect of free fatty acids on coagulation may be 

amplified by catecholamines released in increased amounts under the stress of trauma. 

Catecholamines are known to trigger the clotting mechanism by stimulation of alpha 
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receptors on the blood vessel wall (Whitaker et al., 1969). Epinephrine may also activate 

factor V (Forwell and Ingram, 1957). Recently, the concept of pulmonary damage induced 

by elevated levels of plasma ftee fatty acids have been challenged. Many studies showed 

that pulmonary microvascular damage following fat embolism may be attributed to 

intravascular coagulation and the resultant fibrin entrapment in the pulmonary capillaries 

and leuckocytosis, ratho" than the result of increased circulating fatty acids levels (Serota, 

1984; Barie et al., 1981; Barie and Malik, 1982). 

Whether fat embolization represents only a superimposition without direct 

pathogenetic importance or whether it is a central factor in the pulmonary damage, is not yet 

known (Serota, 1984; Alho, 1982). 

3") The surfactant system of the lung The alveoli of the mammalian 

lung are coated with an alveolar lining layer, and the pulmonary surfactant is one 

component of this layer (Kuroki et al., 1986). The physiologic function of this layer is to 

decrease the surface tension at end-expiration, preventing atelectasis, and to increase 

surface tension at the end of inspiration, facilitating elastic recoil (Avery et al., 1986). By 

doing so, the surfactant system reduces the work of breathing by reducing the surface 

tension at the air-alveolar interface, and it also tends to keep the alveoli dry by reducing the 

tendency of fluid movement across the alveolar-capillary membrane into the alveolar spaces 

(Hills, 1981). The pulmonary surfactant is synthesized in alveolar Type n pneumocytes 

and secreted into the alveolar spaces (Kuroki et al., 1986), and its deficiency results in 

alveolar coUapse at end-expiration and progressive ventilatory failure (Strayer et al., 1986). 

A pathological condition called respiratory distress syndrome (RDS) develops in premature 

infants with immature lungs deficient in pulmonary surfactant The pulmonary surfactant 

system is rich in phospholipids, particularly dipalmitoyi phosphatidylcholine (Kuroki et al.; 
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1986; Avery et aL, 1986; Smith, 1983). Some pathological as well as non-pathologic 

conditions are known to change the activity of the pulmonary surfactant system. Interstitial 

lung disease may change pulmonary surfactant because of direct damage to Type n 

pneumocytes, or their proliferation (Baker et al., 1986). In patients undergoing 

cardiopulmonary bypass, pulmonary surfactant activity may be inhibited because of leaking 

of plasma components into the air spaces, through the leaking lung membranes, causing 

lung collapse and edema (Phang and Keough, 1986). In pulmonary embolism, blood 

supply to different lung segments are interrupted. Interference with blood supply causes a 

decrease in metabolic activity of Type U alveolar pneumocytes, with subsequent depletion 

of surfactant Surfactant deficiency may be responsible for the abnormal respiratory 

function tests and chest radiographs associated with pulmonary embolism (Smith, 1983; 

Sutnick et al., 1969). Direct contact between neutral fats or their hydrolized products, free 

fatty acids, and the phospholipid layer within the alveolar spaces, inhibits surfactant activity 

with the resultant changes in lung mechanics (Peltier, 1969). Surfactant abnormalities has 

been reported as a major contributing factor to the pathophysiology of trauma and shock. 

Impared lung mechanics associated with traumatic shock have been attributed to the loss of 

elasticity of the alveolar surfactant film (Petty et al., 1977). Abnormal chest radiographs, 

characterized by discoid atelectasis (Coventry et al., 1974, Daniel et al., 1972), as well as 

significant changes in pulmonary function have been reported in man following TELA. The 

possibility of toxic damage to the surfactant system have been explored as an explanation of 

some of these changes (Rinecker, 1980). 

c. Elimination of fat emboli from the pulmonarv circulation Several 

mechanisms exist to eliminate fat emboli out of the pulmonary circulation (Emson, 1958; 

Gurd, 1970; Serota, 1984): i) hydrolysis of the emboli by pulmonary lipases into free fatty 
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acids and glycerol; ii) lysis of the fibrin elements, trapped in the fat particles, by the 

Gbrinolytic system into fibrin degradation products; iii) elimination by phagocytosis by 

macrophages; iv) expectoration of fat particles extravasated into the alveolar spaces; and 

v) crossing of fat particles, through the pulmonary vascular bed, into the systemic 

circulation, which may be removed with urine, or embolize other systemic organs (brain, 

kidney, etc.). 

3. Activation of the cascade system 

The cascade system is a system which is activated sequentially. The coagulation, 

fibrinolytic, kaUikrein-kinin, and the complement system are all cascade systems, closely 

related, and activation of one system will lead to sequential activation of the other systems. 

Trauma can activate the cascade system through four different pathways (Risberg and 

Heidman, 1980): 

1. Thromboplastic products will be released fixjm traumatized tissue and fat cells 

(Modig et al., 1976; Saldeen, 1969), with subsequent activation of the coagulation 

system through the external pathway. Several studies (Blaisdell et al., 1970; 

Bergentz, 1968) reported a significant decrease in several coagulation factors 

following trauma, particularly factors n, V, Vn, VUI, X, and platelet counts. This 

decrease is followed by a significant increase in fibrinolysis and plasminogen 

activation. These results suggest consumption coagulopathy, intravascular 

coagulation, and the resultant activation of the fibrinolytic system. 

Intravascular coagulation can produce several pathological changes in the 

lung. These changes consist of pulmonary congestion and edema, hemorrhage, 

atelectasis, microthrombi formation and entrapment in pulmonary capillaries, and 

finally, hyaline membrane formation (Serota, 1984; Mason et al., 1971). 
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Furthermore, procoagulants released from traumatized tissue into systemic 

circulation, can induce clotting in the pulmonary circulation itself, or adding 

thrombus to previously deposited emboli (Blaisdell et al., 1970). 

The end result of the embolic process in the pulmonary circulation 

(thromboemboli and fat emboli) is the loss of microcirculatory integrity due to 

ischemic damage to the endothelial cells and basement membrane (Blaisdell et al., 

1970). This damage was found to be more pronounced in the area of the 

pulmonary capillary bed (Sturm et al., 1986; Parker et al., 1974). Recent studies 

showed that the magnitude of tissue thromboplastin release and pulmonary 

microembolism were significantly correlated to the degree of pulmonary 

dysfunction and damage following trauma (Modig et al., 1976). 

2. The fibrinolytic system will be triggered by thromboemboli trapped in pulmonary 

capillaries. Plasmin, a proteolytic enzyme that digests fibrin, will be formed in 

increased amounts from its precursor plasminogen following activation of the 

fibrinolytic system. Local fibrinolysis in the lung causes rapid breakdown of fibrin 

in the puhnonary vessels (Saldeen, 1969), with subsequent formation of toxic 

fibrin degradation products. Levels of fibrin degradation products are always 

elevated following trauma (Blaisdell et al., 1970). 

3. The complement system is activated by plasmin generated during activation of the 

fibrinolytic system. Generation of plasmin will result in cleavage of complement 

proteins and formation of complement-derived chemotactic and leukocyte-

aggregating peptides, C3a and C5a, and activation of the complement system 

(Stormorken, 1979). The complement system is activated in the early post-
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traumatic phase, with the resultant formation of protein fractions which have 

different biological effects, resulting in cell lysis and destraction. 

4. The kaUikrein-kimn system is activated through several pathways. The most 

important pathway is through activation of Hageman factor and plasmin, resulting 

from post-traumatic activation of the coagulation and fibrinolytic systems. They 

will act on prekallikerin converting it to kallikerin. Plasma kaUikerin wiU act on 

high molecular weight kininogen, converting it to bradykinin. Bradykinin causes 

pulmonary edema by increasing pulmonary capillary permeability. Bradykinin is 

inactivated in the pulmonary circulation by the action of angiotensin converting 

enzyme located on the surface of the pulmonary vascular endothelium. The 

edematogenic effect of bradykinin on the lung may be amplified by the lack of its 

inactivation in the pulmonary circulation following postembolic pulmonary 

endothelial damage. 

The different cascade systems are aU activated post-traumatically and are not only 

involved in the systemic response to trauma, but also in the specific pathological changes 

taking place in the lungs (Risberg and Heidman, 1980). Recent studies showed that 

postembolic pulmonary damage is due to activation of different cascade systems (Barie et 

al., 1981; Barie and Malik, 1982), however, the specific role of these systems in inducing 

pulmonary injury remains to be evaluated (Risberg and Heidman, 1980). 

4. Release of vasoactive and bronchiactive compounds 

The deleterious effects of trauma on the lungs is probably mediated by the release of 

several potent smooth muscle active substances fiom different sources: 
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1. Histamine is released from pulmonary tissue damaged by vascular obstruction or by 

peptides released during activation of the coagulation system (Modig et al., 1976; 

Blaisdell et al., 1970). 

2. Serotonin released by thrombin fiom platelet coating of the emboli (Blaisdell et al., 

1970; Rosoff et al., 1971; Peltier, 1969). Beside its effects on vascular and 

bronchial smooth muscles, serotonin can cause aggregation of blood elements as 

early as 15 minutes after trauma, promoting further microthrombi formation and 

occluding more pulmonary capillaries (Swank et al., 1964). The deleterious effects 

of serotonin on the lung may be aggravated by depression of its uptake and 

metabolism (Flink et al, 1982) by the damaged pulmonary endothelium. 

Depression of serotonin uptake and metabolism following post-traumatic 

microembolization may be due to: i) changes in pulmonary blood flow and its 

regional distribution; ii) decreased available surface area for exchange due to 

mechanical obstruction; iii) endothelial injury following microembolization; and 

iv) saturation of serotonin uptake mechanism due to its postembolic overproduction 

in the pulmonary circulation. It was suggested that serotonin might be the agent 

responsible for the reflex and direct cardiopulmonary changes associated with 

pulmonary embolism (Rosoff et al., 1971). 

3. Fibrin degradation products are released during activation of the fibrinolytic system. 

They induce pulmonary vascular injury via neutrophil sequestration and activation 

in the pulmonary vessels, with the resultant release of toxic oxygen radical (Malik, 

1985). 

Vasoactive and bronchiactive compounds can induce acute lung damage by several 

mechanisms: 
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1. Alveolar constriction with the resultant increase in airway resistance and work of 

breathing, and decrease in lung compliance. 

2. Pulmonary vasoconstriction and subsequent increase in both pulmonary arterial 

pressure and pulmonary vascular resistance. 

3. Increase in pulmonary vascular permeability and development of pulmonary edema, 

5. Mechanism of pulmonary repair following acute damage 

The lungs have remarkable ability to recover from serious damage. This is possible 

due to the rapid regeneration and differentiation of Type n alveolar pnuemocytes into 

Type I cells, repairing the alveolar lining with its coat of phospholipids in a few days 

(Bachofen and Weibel, 1974; Peltier, 1969). The lung parenchyma is also protected 

against postembolic infarction by having three sources of oxygen supply. These are: the 

pulmonary arteries, the bronchial circulation, and direct diffusion of oxygen from the 

alveolar spaces (Peterson and Goldman, 1985). 
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m. MATERIALS AND METHODS 

A. Experimental Design 

Thirty-one mature mongrel dogs weighing 15-22 Kg, heartworm free, were 

obtained from Laboratory Animal Resources at Iowa State University. Heartworm 

evaluations were confirmed again during post mortem examination. All animals were 

fasted for 12-18 hours before the experiment 

A simple split plot design was used in which the thirty-one experimental animals 

were randomly divided into four unequal groups. Group I consisted of nine dogs on 

which THA was performed utilizing PMM bone cement* Group n consisted of eight 

dogs on which THA was performed utilizing Play Dought (PD) as a control for PMM. PD 

is a soft, non-toxic polysaccharide dough. It was chosen as a control for PMM because of 

its similar thickening consistency, malleability, and handling properties to PMM. 

Group m, representing massive surgical trauma induced during THA procedure, consisted 

of eight dogs on which Sham THA Surgery (SS) was performed. The Sham procedure 

included all muscle and bone exposures, manipulation, and preparation except no 

cementing material was used. Group IV consisted of six dogs on which no THA surgical 

procedure was done; however, blood vessels were surgically exposed and cannulated for 

the purpose of physiological monitoring of the cardiopulmonary functions during the 

experiment This group served as a control (C) to study the effects of anesthesia alone on 

*Surgical Simplex P, Howmedica, Inc., Rutherford, N.J. 

tpiay-Doh, Kenner Products, Cincinnati, OH. 
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the cardiopulmonary functions during the lengthy procedure of THA. Surgical approach to 

the first three groups (PMM, PD, and SS) was unilateral, with either the right or the left hip 

operated on. 

A pilot study was performed prior to the actual study in which eight dogs were 

utilized. The objectives of the pilot study follow: 

1. To gain the necessary surgical skills and knowledge required to perform the 

complicated orthopedic procedure of THA. 

2. To time different stages of the procedure (muscle exposure, reaming the acetabulum 

and femur, as well as recording of different physiological parameters). 

3. To coordinate the process of sample collection at different stages of tiie surgical 

procedure. 

4. To test the efficiency of different monitoring equipment and computers during the 

experiment. 

5. To estimate the total blood loss during siu-gery for subsequent fluid replacement in 

the actual study. 

6. To obtain experience with the general response of the cardiopulmonary system to 

different stages of the procedure. 

In two of the pilot study dogs, bilateral THA was performed for the sake of 

practice. In all of the pilot study animals, THA was performed utilizing PMM bone 

cement. No data from any pilot study animals were included in the present study. 

B. Experimental Procedures 

All animals were anesthetized with sodium pentobarbital (25 mg/Kg, iv) initially. 

Subsequent administration of small bolus doses was continued throughout the experiment 

to maintain the animals under a light surgical plane of anesthesia. The depth of anesthesia 
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was determined by monitoring different cardiopulmonary parameters as well as peripheral 

reflexes (pain reflex and jaw tone). Intravenous anesthesia was favored over inhalation 

anesthesia to avoid any interference in the proposed study of lung mechanics and gas 

exchange. 

1. Lung mechanics and gas exchange 

After induction of anesthesia, the dogs were intubated with cuffed endotracheal 

tube, and strapped in lateral recumbency on a thermal pad. The endotracheal tube was 

connected to a pneumotachograph and a differential pressure transducer as well as an 

oxygen analyzer and carbon dioxide analyzer. The differential pressure transducer as well 

as O2 and CO2 analyzers were subsequently connected to a Beckman recorder. This setup 

was utilized to measure oxygen consumption (VO2), carbon dioxide production (VCO2), 

and air flow (AF). Air flow was then electrically integrated to give tidal volume (TV). 

Detailed description of the system, formulas, and calibrations procedures have been 

reported elsewhere (Baker, 1986). 

An esophageal catheter, connected to a Statham transducer and a Beckman recorder, 

was inserted into the esophagus to measure the esophageal pressure (EP) as representative 

of the intrapleural pressure (IP). The tip of this catheter was located at the level of the 

thoracic inlet and verified by the characteristic waveform. 

2. Systemic and pulmonary hemodynamics 

A two-inch incision was made in the femoral triangle of the opposite limb to the 

operated one. The femoral artery and vein were identified, isolated, and cannulated with a 

double lumen Swan-Ganz thermodilution catheters. The tip of the arterial catheter was 

located in the left ventricle to measure the left ventricular pressure (LVP), while the 

proximal port was located in the aortic arch to measure aortic pressure (AoP) as 
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representative of the systemic arterial pressure (SAP). The location of each port was 

verified by the characteristic waveforms of both the left ventricle and the aortic arch. The 

arterial catheter was also used to obtain anaerobic arterial blood samples for blood gas 

analyses. 

The tip of the venous catheter (thermodilution catheter) was located in the 

pulmonary arteiy to measure the pulmonary arterial pressure (PAP). The location of the tip 

of this catheter was verified by the characteristic waveform of the pulmonary artery. The 

venous catheter was also utilized to measure cardiac output (CO) by thermodilution 

technique and to obtain mixed venous blood for blood gases analysis and hemoglobin 

determination by cyanmethemoglobin method (Davidsohn and Nelson, 1969). When 

difficulties were encountered cannulating the pulmonary artery through the femoral vein, 

the external jugular vein was then exposed and cannulated as an alternative route to the 

pulmonary artery. 

All pressure catheters were connected to Statham pressure transducers and a 

Beckman recorder. All vascular catheters were kept patent by frequent flushing by 

hepaiinized saline solution (10 iu of heparin/ml), particularly before each recording period. 

Cardiac output was measured by a thermodilution cardiac output unit connected to 

the Swan-Ganz pulmonary arterial catheter, and the proximal port of that catheter was 

utilized to inject the cold saline solution. Figure 1 shows a block diagram of the 

experimental setup and different recording systems. 

3. Recording procedures 

Lung mechanics and gas exchange parameters as well as systemic and pulmonary 

hemodynamic parameters were recorded on the Beckman recorder, and were processed by 

a microcomputer through an A/D convertor (analog to digital). Figure 2 shows a typical 
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Figure 1. Block diagram of the experimental setup and different recording systems 
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Figure 2. Typical trace of Beckman recording obtained during the baseline period (TO) 
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Beckman recording obtained during the base line period (TO). Data &om the 

thermodilution cardiac output unit were processed directly by the microcomputer through 

the A/D converter. This system allowed us to obtain an online numerical data of all the 

parameters recorded. Utilizing standard formulas, the microcomputer was programmed to 

derive several other physiological parameters from the originally recorded parameters: 

cardiac index (CI), stroke volume (SV), pulmonary vascular resistance (PVR), systemic 

vascular resistance (S VR), heart rate (HR), myocardial contractility (DP/DT), minute 

ventilation (MV), lung compliance (LC), airway resistance (AWR), and work of breathing 

(WB). 

Standard formulas, operation and calibration of different monitoring equipment and 

electronics, as well as programming of the computer, have been discussed in detail 

(Engwall, 1986; Engwall, 1980). 

4. THA procedure 

THA was performed according to a technique described by Olmstead et al. (1981). 

The amount of blood loss during the procedure was minimized by using surgical 

electrocautery unit and careful manipulation of the tissues. To avoid hypovolemia resulting 

from blood loss during the procedure, fluid replacement was initiated with normal saline 

solution. An amount of 180 ± 60 ml of normal saline solution was infused throughout the 

procedure through a vena catheter inserted in the cephalic vein. Only PMM, PD, and SS 

groups received iv saline infusion, group C (control, no THA) did not receive any since 

blood loss was not anticipated. The amount of replacement fluid used in this study was 

approximately the same amount of blood lost measured in the pilot study. While using the 

surgical electrocautery, all the recording equipments and other electronic devices were 

shutdown momentarily to avoid electrical interferences with the recording signals. 
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5. Recording periods 

Each experiment was divided into 7 different stages, T0-T6. Figure 3 shows a 

block diagram of the different stages of the experiment and the different recording periods. 

For group SS, since no cementing was done, a period of 20 minutes was elapsed between 

T2 and T3. For group C, since no surgery was done, recording periods TO to T6 were 

recorded according to the time intervals shown in Figure 3. These time intervals were 

approximated from those measured in the pilot study. At each recording period, a full set 

of the following parameters were recorded: 

1. lung mechanics and gas exchange, 

2. systemic and pulmonary hemodynamics, and 

3. arterial and mixed venous blood gases. 

Also, a full set of other physiological parameters calculated from the originally 

recorded parameters was obtained. 

6. Blood gas analyses 

Anaerobic arterial and mixed venous blood samples were collected in heparinized 

syringes, placed immediately in an ice bath, and analyzed later on a 513 Blood Gas 

Analyzer (Instrumentation Laboratories). The following blood gases parameters were 

measured in each blood sample: pH, partial pressures of oxygen (PO2), and partial 

pressure of carbon dioxide (PCO2). The following parameters were calculated by the 

blood gas machine utilizing the measured parameters: base excess (BE), bicarbonate 

(HCO3.), and total carbon dioxide (TCO2). 

7. Histopathological study 

At the end of each experiment, the animal was killed with an iv injection of a 

saturated solution of magnesium sulfate (20-30 ml). Death was verified by termination of 
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Figure 3. Block diagram of different stages of the experiment and recording periods 
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the cardiopulmonary functions. The lungs and heart were then removed from the thoracic 

cavity through a ventral midline sternotomy incision, and examined grossly. A lung lobe 

was randomly selected, excised, and immersed in ajar containing 10% buffered 

formaldehyde solution. At the same time, the stem bronchus of that lobe was cannulated 

and perfused with the same solution under physiological pressure (25-30 cm H2O) until 

nearly full inflation was achieved. 

Following 24 hours of refrigeration, eight blocks of lung tissue from each animal 

were randomly cut and processed for light microscopic examination according to standard 

histopathological techniques. Four sections were stained with Hematoxylin and Eosin 

(H & E) for routine histopathological examination. The other four sections were stained 

with a lipid specific stain, oil-red-0. These four sections were utilized for quantitative 

estimation of fat emboli in the lung. 

8. Quantitative analysis of pulmonary fat 

The large variability in the shapes and sizes of the fat globules observed within each 

lung section, made it very difficult to use conventional quantitative histopathological 

techniques for fat (number of fat globules per microscopic field). These techniques have 

been utilized before to study pulmonary fat embolism following THA in man (Sevitt, 

1972). The statistical errors that may be created if lung fat was quantitated by conventional 

techniques, had forced us to find a different, more reliable, quantitative technique with less 

errors. Accordingly, a Zeiss image analysis system was utilized in order to avoid the errors 

that may be created by counting fat globules of different shapes and sizes. 

In each of the four lung sections (from each animal) stained with oil-red-0, five 

microscopic fields were randomly selected by an anatomist (Dr. C. Jacobson, Department 

of Veterinary Anatomy, Iowa State University), who was not familiar of the nature of the 
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project, for quantitative estimation of fat particles. A total of 20 microscopic fields of lung 

tissue from each animal were then subjected to image analysis by Zeiss Image Analysis 

System. The system was programmed to discriminate between the bright red color of fat 

particles, and the surrounding parenchymal tissue (stained blue). In each field, two 

different images were measured in square millimeters: a) the fat particles stained red and b) 

the total area of the field, excluding air spaces, occupied by both fat and parenchymal 

tissue. The ratio between the dimension of fat and total area was computed, and expressed 

as percent fat per low power microscopic field. Image analysis techniques have been 

described elsewhere (Schwarz, 1986). 

9. Ultrastructural study 

Lung tissue from a total of eight randomly selected dogs, two animals from each 

experimental group, were processed for the electron microscopic (EM) study according to 

techniques previously described (Hayat, 1970). At the end of the experiment, animals 

selected for EM study were given additional sodium pentobarbital to depress the 

cardiopuknonary functions significantly. The depth of anesthesia was verified by 

monitoring different cardiopulmonary parameters. The thorax was opened through a 

ventral midline sternotomy incision, and a lung lobe was randomly selected. The blood 

vessels and the stem bronchus to that lobe were identified, occluded by a Satinsky 

cardiovascular clamp then severed with a scalpel blade and immediately immersed in a 4% 

glutaraldehyde solution. The principal bronchus was cannulated and perfused with 4% 

glutaraldehyde solution as previously discussed. The animal was then killed with an iv 

injection of magnesium sulfate. This procedure was followed to avoid most of the 

ultrastructural changes subsequent to post mortem damages. 



www.manaraa.com

47 

10. Collection and processing of the Alveolar Lining Material (ALM) 

Collection of ALM began as soon as the lungs were removed from the thoracic 

cavity, and before collecting tissue for histopathological study. In animals selected for 

ultrastructural study, lung tissue was collected first then the rest of the lung was lavaged. 

Utilization of Satinsky cardiovascular clamp prevented contamination of ALM with red 

blood cells. 

The lung was lavaged by 500 ml of normal saline solution. A cuffed endotracheal 

tube was introduced into the trachea and advanced into the right or left principal bronchus. 

The cuff was then inflated, and the tube was then connected to a saline reservoir 30 cm 

above the level of the lung. The saline was then introduced into the lung in small 

increments, about 50-75% of the tidal volume, and collected in small increments to avoid 

alveolar rupture and subsequent contamination of the ALM with blood cells. However, 

accidental contamination with red blood cells occurred in several samples and they were 

automatically excluded from the study. The lavage fluid was then centrifuged for 15 

minutes at 2000 ipm to eliminate cellular debris and mucus. The supernatant fluid was 

recentrifuged at 20,000 rpm for another 60 minutes, and the supernatant fluid was 

discarded. The ALM was then gently collected from the bottom of the centrifuge tube, 

lyophilized and stored in a dark cold place until analyzed. Phospholipids were extracted 

from the lyophilized ALM in chloroform/methanol solution (2:1, v/v). The extract was 

washed with 0.74% aqueous potassium chloride solution to remove traces of nonlipid 

contaminants. The isolated chloroform fraction was then evaporated at 47°C under a stream 

of nitrogen. The moist residue was redissolved in 2 ml chloroform/methanol (1:1, v/v) 

and stored under nitrogen at -20°C for further analysis. Quantitative identification of the 

major fractions of phospholipids components of ALM was done utilizing High Pressure 
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Liquid Chromatography (HPLC) system according to the modified technique of Kaduce et 

al. (1983) which is described in En g wall (1986). These fractions included 

phosphatidylcholine (PC), phospharidylethanolamine (PE), phosphatidylglycerol (PG), 

phosphatidylinositol (PI), and phosphatidylserine (PS). Values of different phospholipid 

factions of ALM were expressed as a percentage of the total phospholipid contents of the 

ALM. 

C. Statistical Analysis 

In order to coixect for (and to reduce) the variability between the animals at the 

beginning of the experiment, TO of all physiologically recorded parameters was utilized as a 

covariate in the statistical analysis. In PMM, PD, and S S groups, since all animals went 

through the same steps between TO and T2 of THA procedure, values of TO to T2 of all the 

animals in these three groups were treated as one group. This procedure was not followed 

with group C (control group) since no surgical trauma was done on this group. Statistical 

analysis was done on all recorded physiological parameters of the four experimental groups 

in two steps. In the first step, values of recording periods TO to T2 were statistically 

analyzed. In the second step, values of recording periods T3 to T6 were analyzed. 

This procedure of analysis was performed to separate the effect of surgical trauma 

on different physiological parameters from the effect of post implantation period on the 

same parameters, and to allow us to study separately the effect of surgical trauma alone. 

A General Linear Model (GLM) analysis procedure was run on the values of each 

recording period to test for a treatment difference. Values of different recorded 

physiological parameters were expressed as Least Square Mean ± Standard Error of Least 

Square Mean (LSM ± SELSM). 
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Student's t test was run on the values of the two studies described below to test for 

treatment difference: 

1. The image analysis study of pulmonary fat emboli to test for differences in per cent 

fat between the experimental groups; 

2. The ALM study, to test for differences in the phospholipid components of the ALM 

between the experimental groups. 

Values for the latter two studies were expressed as Mean ± Standard Error of the 

Mean (M ± S EM). 

For all studies, (P) value of less than 0.05 was considered as a statistically 

significant difference between the experimental groups. A (P) value of more than 0.05 but 

less than 0.1 was considered as approaching significance for a difference between the 

experimental groups. 

All graphs presented in this study were plotted by the TELL.A.GRAPH computer 

system at Iowa State University Computation Center. All data presented in figure form are 

also presented in tables in the Appendix. 

The figures showing trends were presented without imposing statistical significant 

points. Therefore, all important statistical comparisons are presented in the text and listed 

in the tables in the Appendix. 
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IV. RESULTS 

A. Post Mortem Examination of Experimental 

Animals 

Post mortem examination of the lungs of the thirty one dogs did not reveal any 

significant pathological changes. Occasionally, patchy areas of atelectasis were observed in 

the dependent lung lobes. These atelectatic areas were observed in several animals in all 

four groups and were consistently located in the dependent lung lobes, consequently they 

were considered as having no pathological significance. 

B. Histopathological Study of Pulmonary Tissue 

Microscopic examination of lung tissue stained with H & E revealed no significant 

histopathological changes in any of the four experimental groups. 

Microscopic examination of lung sections stained with oil-red-0 revealed varying 

numbers of bright, red stained fat globules of different sizes and shapes. These fat 

globules were detected in every lung section examined in both PMM and PD groups, and in 

most lung sections of S S group. No fat globules were detected in C group (control group). 

These fat globules were randomly distributed throughout the microscopic field and they 

were located in the intravascular spaces of the pulmonary arterioles and capillaries. Plate 1 

consists of photomicrographs of lung sections representing the four experimental groups, 

stained with oil-red-0 where fat globules stained bright red. Plate 2 contains 

photomicrographs of lung sections representing the same four groups, stained with osmic 

acid where fat globules stained black (obtained during processing of lung tissue for the EM 

study). In tiiese sections, pulmonary arterioles and capillaries were plugged and distended 
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Photomicrographs of lung sections from the four experimental groups 
at the end of the experiment illustrating pulmonary fat emboli (arrows) 
(oil-red-0 X 60) 

A. PMM group 
B. PD group 
C. SS group 
D. C group 
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Photomicrographs of lung sections ftom the four experimental groups 
at the end of the experiment illustrating pulmonary fat emboli (arrows) 
(osmic acid. X 60) 

A. PMM group 
B. PD group 
C. SS group 
D. C group 
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with round or oval fat globules. At the periphery, the vessel walls and their endothelial 

linings were tightly compressed, suggesting great tension. 

C. Quantitative Analysis of Pulmonary 

Fat Emboli 

Image analysis study of pulmonary fat showed that lung tissue from PMM group 

contained significantly more fat particles, on the bases of per cent fat per low power 

microscopic field, than the other three groups (p<0.05). There was not any significant 

difference between PD and S S groups in pulmonary fat contents. However, PD group was 

significantly higher than the control (p<0.05), and S S group was approaching significant 

difference from control (p<0.1) (Figure 4 and Table Al). 

D. Ultrastructural Study 

EM study of lung tissue revealed the following: 

1. Platelet adhesions to the capillary wall and platelet degranulation in PMM group 

(Figure 5 and 6). 

2. PMM group also showed endothelial blebs (ballooning), and endothelial cell 

rupture (Figure 7). 

3. PMM group (Figure 8) and PD group (Figure 9) both showed an engorgement of 

the pubnonaiy capillaries with electron-dense material (fat microemboli), as well as 

ruptures and mechanical tears in the capillary wall and endothelium, exposing the 

thrombogenic subendothelial layer. 

4. S S group (Figure 10) and C group (Figure 11) both showed no significant 

ultrastructural changes with normal alveolar-capillary membrane, and granulated, 

non-adhering platelets freely moving in the capillary lumen. 
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Figure 5. Electron micrograph of a canine lung (PMM group) illustrating a platelet 
(P) adhering to a capillary wall (arrows) (X 15,700) 
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Figure 6. Electron micrograph of a canine lung (PMM group) illustrating a 
degranulated platelet (P) with empty vacules (V) as well as adhesions 
between the platelet and the capillary wall (arrows) (X 71,600) 
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Figure 7. Electron micrograph of a canine lung (PMM group) illustrating endothelial 
blebs (ballooning) (B) and endotheUal cell rupture (arrow) (X 71,600) 
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Figure 8. Electron micrograph of a canine limg (PMM group) illustrating pulmonary 
capillary engorgement with electron^ense material (fat microembolus) (10 
and ruptures and mechanical tears in the capillary wall and endothelium 
(arrows) (X 7980) 
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Figure 9. Electron micrograph of a canine lung (PD group) illustrating pulmonary 
capillary engorgement with electron-dense material (fat microembolus) (F) 
and mechanical tears in the capillary wall and endothelium (arrow) 
(X 11,700) 
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Figure 10. Electron micrograph of a canine lung (S S group) illustrating granulated, 
non-adhering platelet (P) and a norn^ alveolar-capillary wall (arrows) 
(X 71,600) 
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Figure 11. Electron micrograph of a canine lung (C group) illustrating granulated, 
non-adhering platelet (P) and a nonW alveolar-capillary (arrows), 
and a red blood cell (^) (X 51,300) 
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All groups showed normal Type 11 alveolar pneumocytes loaded with dense 

lamellar bodies. Figure 12 is an electron micrograph of Type II alveolar 

pneumocyte in PMM group. 

E. Systemic and Pulmonary 

Hemodynamics Study 

Average hemoglobin concentration (HB) did not show any significant differences 

between the four groups at the different stages of the experiment (Figure 13 and 

Table A2). 

Average mean systemic arterial blood pressure (AoP) did not show any significant 

differences between the four groups at the different stages of the experiment 

(Figure 14 and Table A3). 

Average systemic vascular resistance (SVR) for the first three groups (PMM, PD, 

and SS) at T2 was significantly higher than its baseline value at T1 (p<0.05). At 

T5 and T6, PMM group showed significant elevation over the control value (C 

group) (p<0.05) (Figure 15 and Table A4). 

Average mean left ventricular pressure (LVP) did not show any significant 

differences between the four groups at the different stages of the experiment 

(Figure 16 and Table A5). 

Average myocardial contractility (DP/DT) did not show any significant differences 

between the four groups at the different stages of the experiment (Figure 17 and 

Table A6). 

Average heart rate (HR) did not show any significant changes between the four 

groups at the different stages of the experiment (Figure 18 and Table A7). 
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Figure 12. Electron micrograph of a canine lung (PMM group) illustrating normal 
Type n alveolar pneumocyte (arrows) loaded with dense lamellar bodies 
(L) and a pulmonary capillary engorged with electron-dense material (fat 
microembolus) (F) (X 11,700) 
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Figure 13. Time course changes in average hemoglobin concentration in the four experimental groups during tlie 
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Figure 14. Time course changes in average mean systemic arterial pressure in the four experimental groups during the 
experiment 
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Figure 16. Time course changes in average mean left ventricular pressure in the four experimental groups during the 
experiment 
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Figure 17. Time course changes in average myocardial contractility in the four experimental groups during the 
experiment 
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7. The average value of stroke volume (S V) for the first three groups (PMM, PD, and 

SS) at T2 was significantly lower than its baseline value at T1 (p<0.05). At T3 the 

first three groups again were significantly lower than the control (p<0.05). At T5 

and T6, only groups PMM and PD were significantly different from control 

(p<0.05) (Figure 19 and Table A8). 

8. Average cardiac output (CO) followed a pattern similar to that of S V. Average CO 

for the first three groups (PMM, PD, and SS) at T2 was significantly lower than its 

baseline value at T1 (p<0.05). At T3 and T5 SS group was significantly lower than 

the control (p<0.05), while PMM group was approaching significant difference 

from control (p<0.1) at T3 and T4. At T5 and T6 PMM group was significantly 

lower than the control (p<0.05), while S S group was approaching significant lower 

values than the control at T6 (p<0.1) (Figure 20 and Table A9). 

9. The changes in average cardiac index (CI) showed a similar pattern to those 

observed with CO. The average value of the first three groups (PMM, PD, and SS) 

at T2 was significantly lower than the baseline value at T1 (p<0.05). At both T5 

and T6 PMM group was significantly lower than the control (p<0.05), while SS 

group was approaching significant drop from the control group (p<0.1) (Figure 21 

and Table AlO). 

10. Average mean pulmonaiy arterial pressure (PAP) did not show any significant 

differences between the four groups at the different stages of the experiment 

(Figure 22 and Table All). 

11. Average pulmonary vascular resistance (PVR) followed a pattern similar to that 

observed with SVR. The average value for the first three groups (PMM, PD, and 

SS) at T2 was significantly higher than the baseline value at T1 (p<0.05). The 
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www.manaraa.com

4500 

4000 

& 3500 

3000 

2500 

2000 —T" 
T1 

—T" 
12 

—T" 
T3 

® PMM 

0 PD 

—T" 
T4 

Time Period 

—T" 
T5 

A SS 

m c 

—r~ 
T6 

oo 
w 

Figure 21. Time course changes in average cardiac index in the four experimental groups during the experiment 
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average values for PMM group showed a tendency toward elevation throughout the 

experiment, and at T5 it was significantly higher than PD group (p<0.05) and 

approaching significant elevation from both control and SS groups (pcO.l), while 

at T6 it approached significant elevation fr^om SS group (p<0.1) (Figure 23 and 

Table A12). 

During injection of PMM in the femoral medullary canal of group I and PD in 

group n and insertion of the femoral prosthesis, a sudden and an unexpected elevation was 

observed in all systemic and pulmonary hemodynamic parameters that were recorded on the 

Beckman recorder (AoP, PAP, LVP, HR) (Figures 24 and 25). That sudden elevation in 

pressures was transient in nature, lasted for few seconds, and all pressures returned back to 

its pre-insertion values. That higher elevation was not high enough to cause an overall 

significant changes in these parameters at T3 (when either PMM or PD and the femoral 

prosthesis were inserted into the femoral medullary canal). The magnitude of such an 

elevation in PMM group was higher than its magnitude in PD group. These changes were 

not observed in SS group (Figure 26). 

F. Lung Mechanics and Gas Exchange 

1. Respiratory rate (RR) for PMM group showed a tendency to increase from T2 to 

T6. At T5 it was significantiy higher than PD group (p<0.05), and at T6 it was 

significantly higher than the other three groups (pcO.OS) (Figure 27 and 

Table A13). 

2. Oxygen consumption (VO2) for PMM group showed a similar pattern to RR of the 

same group. It started to increase at T3 to approach significant difference from SS 

group (p<0.1), and at T5 it was significantly different from SS group (p<0.05) and 

approaching significant difference from control (p<0.1). At T6 PMM group was 
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significantly higher than the control and S S group (p<0.05) (Figure 28 and 

Table A14). 

3. Carbon dioxide production (VCO2) tended to increase throughout the experiment 

for PMM group, following a similar pattern to VO2. At T6, VCO2 for PMM group 

was significandy higher than SS group (p<0.05), and approaching significant 

elevation from control (p<0.1) (Figure 29 and Table A15). 

4. Ventilation perfusion ratio (V/Q) for PMM group showed a tendency to increase 

throughout the experiment. The average value for the first three groups (PMM, 

PD, and SS) at T2 was significandy higher tiian its baseline value at Tl. At T5 and 

T6, PMM group was significantly higher than the control (p<0.05) (Figure 30 and 

Table A16). 

5. Airway resistance (AWR) did not change significandy until T6 when PMM and PD 

groups showed significant elevation from control (p<0.05) (Figure 31 and 

Table A17). 

6. Work of breathing (WB) tended to increase gradually for PMM group throughout 

the experiment and at T6, WB for that group was significandy higher than the 

control (p<0.05). At T4 PD group was significantly higher than the control 

(p<0.05) (Figure 32 and Table A18). 

7. Dynamic lung compliance (LC) did not show any specific significant changes 

except at T3 where PD group was significandy higher than the control (p<0.05) 

(Figure 33 and Table A19). 

Again, during injection of PMM in the femoral medullary canal of group I and PD 

in group II and insertion of the femoral prosthesis, a sudden and an unexpected elevation 

was observed in all respiratory parameters that were recorded on the Beckman recorder 
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Hgiire 24. Typical trace of Beckman recording obtained during injection of PMM into 
the femoral canal and insertion of the femoral endoprosthesis (arrows) 
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Figure 25. Typical trace of Beckman recording obtained during injection of PD into the 
femoral canal and insertion of the femoral endoprosthesis (arrows) 
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Figure 28. Time course changes in average oxygen consumption in the four experimental groups during the experiment 
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Figure 30. Time course changes in average ventilation/perfusion ratio in the four experimental groups during the 
experiment 
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Figure 31. Time course changes in average airway resistance in the four experimental groups during the experiment 
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(EP, AF, TV, RR) (Figures 24 and 25). That sudden elevation in respiratory parameters 

was transient in nature, lasted for few seconds, and all parameters returned back to its pre-

insertion values. That increase was not high enough to cause an overall significant changes 

in these parameters at T3 (when PMM or PD and the femoral prosthesis were inserted into 

the femoral medullary canal). The magnitude of such an elevation in PMM group was 

higher than its magnitude in PD group. Again, these changes were not observed in S S 

group (Figure 26). 

G. Blood Gas Analyses 

1. Partial pressures of arterial blood oxygen (Pa02) did not show any significant 

differences between the four groups at different stages of the experiment 

(Figure 34 and Table A20). 

2. Partial pressures of arterial blood carbon dioxide (PaCOa) did not show any 

significant differences between the four groups at different stages of the experiment 

(Figure 35 and Table A21). However, PMM group showed a tendency for lower 

PaC02 values from T2 to T4. 

3. Arterial blood pH showed only one significant difference at T4 where PMM group 

was significantly higher than S S group (p<0.05). However, PMM group tended to 

show gradual increase in pH starting at T2 to T4 matching the gradual decrease in 

PaC02 observed for the same group (Figure 36 and Table A22). 

H. Analysis of Alveolar Lining Material (ALM) 

Biochemical analysis of ALM for its major components did not reveal any 

significant differences between the four groups for any component (Figure 37 and 

Table A23). 
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groups during the experiment 



www.manaraa.com

42 r 

® PMM A SS 
O PD H C 

40 

38 

36 

34 

32 

30 1 1 1 1— 1 1 
T1 T2 T3 T4 T5 T6 

Time Period 
35. Time course changes in average partial pressures of carbon dioxide in the arterial blood of tlie four 

experimental groups during the experiment 



www.manaraa.com

7.41  r  

e PMM 
O PD 

A SS 

m c 

7.40  

7 .39  

7 .38  

7 .37  

7 .36  

7 .35  
T1 T2 T3 T4 T5 T6 

Time Period 
Figure 36. Time course changes in average arterial blood pH in the four experimental groups during the experiment 

! 



www.manaraa.com

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 

B37 

^ PMM 

g P D  

0 SS 

 ̂c 

PI PE 

I 
I 
I 
0 
0 

Frequency histogram of the composition of the alveolar lining material (ALM) of the four experimental 
groups at the end of the experiment 



www.manaraa.com

103 

V. DISCUSSION 

A. Hisîopaîhological Study and Quantitative 

Analysis of Pulmonary Fat 

The absence of significant gross and microscopic lung lesions (except for 

pulmonary fat emboli) in our study is in agreement with Scully's study (1956). He was 

unable to find any characteristic gross or microscopic pathologic changes in lungs showing 

fat embolism in Korean battle casualties. Also, he was not able to detect any edema, focal 

hemorrhage, patchy emphysema, or atelectasis described consistendy in the lungs with the 

more severe grades of pulmonary fat embolism. The absence of histologic lung lesions in 

our study could also be explained by the acute nature of the study and the short duration of 

the experiment 

In our study, pulmonary fat emboli were detected microscopically in all animals in 

the first three groups (PMM, PD, SS). The presence of pulmonary fat emboli in SS group 

could be explained by the fact that reaming of the medullary canal alone, even without 

forced insertion of cement and prosthesis, may give rise to pulmonary fat emboli (Dandy, 

1971). This may be due to elevation of the intramedullary pressure (Danckwordt-

Lilliestrom and Lorenzi, 1970), forcing bone marrow elements into the destroyed 

medullary vessels, and into the systemic venous circulation to the lungs. Forced insertion 

of PMM or PD and femoral prosthesis into the reamed medullary cavity further increase the 

intramedullary pressure, forcing more fat and bone marrow elements into the venous 

circulation. Values of intramedullary pressure, as high as 900 torr, have been recorded 

during forced insertion of PMM and the femoral prosthesis into the femoral medullary canal 

(Kallos et al., 1974; Tranzo et al., 1974; Hallin et al., 1974). Similar values have also 
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been reported when bone wax and femoral prosthesis were inserted into the femoral 

medullary canal of experimental animals (Breed, 1974). 

Bone, because of its high content of fat, extensive vascularity, and the rigidity of its 

structure, provides an ideal condition for the intravasation of fat globules after trauma 

(Peltier, 1957). Several investigators were able to demonstrate the release of fat globules, 

detected in the blood aspirated from the pulmonary arterial catheter, into the systemic 

circulation of every patient they have studied during THA (Alexander and Barron, 1978; 

Busch et al., 1975; Hemdon et al., 1974). Presence of bone fragments have been 

described in lung sections from patients dying following THA (Bras and Veraart, 1980). 

In our study, we were unable to detect any bone fragments in any lung section. 

The presence of significantly large amount of fat in the PMM group may be 

explained by the fact that PMM is a potent lipid solvent, and the exothermic reaction 

associated with its polymerization generates a very high temperature. These two properties 

of PMM may help in disrupting the fat distribution of the medullary cavity. High 

intramedullary pressure could be created during THA by three different mechanisms: a) 

reaming the femoral medullary canal, b) insertion of PMM and the femoral prosthesis, and 

c) air expansion due to the exothermic reaction. These three factors could facilitate the 

introduction of the already melted and relatively smaller fat globules into the systemic 

venous circulation through the destroyed vessels of the femoral medullary canal. 

PD lacks the lipid solvent property of PMM and it does not polymerize or generate 

any temperature when implanted into the medullary cavity. However, forced insertion of 

PD and femoral prosthesis into the femoral medullary canal of PD group resulted in 

significantly less amount of pulmonary fat in that group, compared to PMM group. These 

data indicate that fat solvency and the exothermic reaction associated with PMM are major 
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contributors to the development of pulmonary fat emboli during THA. The amount of 

pulmonary fat in the PD group was not statistically different &om the SS group. This 

further emphasizes the role of some specific physical and chemical characteristics of PMM 

which render its use to be associated with higher amount of pulmonary fat emboli. 

The presence of small amount of fat in the SS group may indicate the possible 

contributing role of surgical trauma alone in the pathophysiological changes associated with 

THA. The fat emboli observed in the SS group are the result of increased intramedullary 

pressure associated with femoral shaft reaming and destruction of the medullary circulation, 

facilitating the entrance of fat and other bone marrow elements into the venous circulation. 

Microscopically, we were not able to detect a single fat embolus in the C group, 

however, our image analysis study of pulmonary fat revealed a 1.19 ± 0.48% fat in that 

group. This very low value is probably not a trae fat, but it is the faint red background 

color of some lung fields that was picked up by the highly sensitive Zeiss image analysis 

system. 

The data from the histopatiiological study and quantitative analysis of pulmonary fat 

suggest; 

1. Pulmonary fat embolism is a common and reproducible phenomenon associated 

with THA in the dog. 

2. Factors other than intramedullary reaming and forced insertion of PMM and the 

femoral prosthesis are responsible for the significantiy higher amount of fat detected 

in the PMM group. These factors include the lipolytic property of PMM and the 

high temperature generated during its polymerization. 

3. Surgical trauma alone could partially contribute to the development of pulmonary fat 

. emboli following THA. 
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B. Ultrastructural Study 

EM study of lung tissue from the four experimental groups showed pulmonary 

microvascular injury, characterized by mechanical tears in the capillary wall in both PMM 

and PD groups as well as endothelial blebs and platelet adhesions and degranulation in the 

PMM group only. The greater pulmonary microvascular damage observed in ±e PMM 

group, may be well correlated to the significantly larger amount of fat emboli detected in the 

pulmonary capillaries and arterioles of that group. However, the PD group showed only 

minor pulmonary capillary injury while the SS group did not show any ultrastructural 

changes. In the PD group, we were able to locate and study a damaged pulmonary 

capillary distended wi± a fat embolus. In SS group, we were not able to locate and study 

an embolized pulmonary capillary. This observation may further indicate the role of 

pulmonary intravascular fat in initiating pulmonary microvascular damage associated with 

pulmonary fat embolism. 

Bone marrow elements released into the venous circulation, and trapped in the 

lungs, following fractures and bone trauma may injure pulmonary vascular endothelium by 

several mechanisms: 

1. Activation of the coagulation cascade with subsequent formation of toxic fibrin 

degradation products (FDP). The fibrinolytic system in the dog lung is very potent, 

consequently this potent fibrinolytic mechanism may generate a great increase in 

plasmin activity and in FDP in response to a given embolic process (Malik, 1983). 

2. Platelet aggregation and leukostasis (Barie et al., 1981). 

3. Generation of toxic free fatty acids from fat emboli by the action of pulmonary 

lipases (Fonte and Hausberger, 1971; Mason et al., 1971; Baker et al., 1971; 

Peltier, 1969; Armstrong et al., 1979). Free fatty acids have been shown to injure 
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the endothelium direcdy by depleting calcium ions which is essential for endothelial 

stability (Peltier, 1957). 

4. Mechanical obstruction of the pulmonary capillaries and arterioles producing a high 

distending pressure, and a higher linear velocity of blood flow through the partially 

obstructed pulmonary circulation might be sufficient to injure the pulmonary 

endothelium (Barie et al., 1981; Ohkuda et al., 1978). Damage of vascular 

endothelium has been reported in the systemic veins of the dog following THA 

(Stewart et al., 1983). 

The presence of endothelial blebs indicates an accumulation of edema fluid between 

the endothelial cells and subjacent basement membrane, thereby lifting away the endothelial 

cells from the underlying basement membrane into the capillary lumen, forming a bleb. 

These blebs may finally rupture or become completely detached from the capillary wall, 

exposing the thrombogenic subendothelial basement membrane (Teplitz, 1968). Although 

blebs were present, we were unable to detect any edema fluid in lung sections by the light 

microscope. 

Our study showed platelet adhesions to the pulmonary capillary wall as well as 

platelet degranulation, which may indicate platelet activation. Platelet coagulant activities 

have been reported to increase significantiy following THA in man, and the development of 

deep vein thrombosis following THA was attributed to such increased platelet activity 

(Walsh et al., 1976; Walsh et al., 1974). Thrombocytopenia and increased pulmonary 

platelet trapping have been reported following musculoskeletal trauma (Blaisdell et al., 

1970; Jansson et al., 1985; Thome et al., 1986), bone fractures (Scully, 1956; Gruner, 

1971; Olsson et al., 1972; Bergentz and Nilsson, 1961; Bradford et al., 1970), and THA 

(Modig et al., 1974; Engesaeter et al., 1984). 



www.manaraa.com

108 

Vascular damage results in an immediate response (Mackie and Pittilo, 1985) 

whereby platelets adhere at the site of the damage attempting to bridge the vascular 

endothelial defect (Morris and Mitchell, 1977) to assist hemostasis (Radegran, 1971; 

Yardumian et al., 1986) and protect the organism fix>m foreign materials and chemicals 

introduced into its vascular system. Platelets aggregate when exposed to the subendothelial 

components of the vessel wall, mainly collagen, basement membrane, and the 

subendothelial microfibrils (Moms and Mitchell, 1977). After the initial attachment of 

platelets to the damaged vessel wall, they spread along the vessel surface in order to cover 

the site of damage. The initial platelet contact and adhesion to the vessel wall appears to 

involve specific structural components of the subendothelium, platelet membrane receptors, 

and factor VHI von Willebrand factor (Mackie and Pittilo, 1985; Yaidumian et al., 1986). 

The process of platelets adhesion and aggregation is mainly related to their 

degranulation (Peterson and Goldman, 1985) and the subsequent release of several active 

endogenous compounds. These active endogenous compounds may include ADP, ATP, 

5-HT, an antihepaiin factor, enzymes, and proteins (Radegran, 1971; Morris and Mitchell, 

1977). ADP appears to be responsible for attracting other platelets to stick to each other 

and to the original platelet mass already adhered to the vessel wall (Morris and MitcheU, 

1977). 

The evidence of the correlation between deep vein thrombosis and subsequent 

development of fatal pulmonary thromboembolism following THA is substantial (Pini et 

al., 1985; Belch et al., 1982; Harris et aL, 1976; Kettunen et al., 1973; Hull and Raskob, 

1986; Schondorf and Hey, 1976; Dechavanne et al., 1976; Sagar et al., 1976; Mannucci et 

al., 1976). Many of these reports consider pulmonary thromboembolism to be a sequel to 

deep vein thrombosis, and it is the thrombi that form in the veins of the thigh or illiac 
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region which are the principal sources of major pulmonary emboli. However, our 

ultrastructural findings of acute pulmonary microvascular damage, following THA, 

demonstrate that the pulmonary vessels, after being damaged by fat emboli, could serve a 

role as a potential initiator to the thromboembolic process within the pulmonary vessels. 

Intravascular coagulation within the pulmonary vessels has been reported in experimental 

fat embolism (Saldeen, 1969). 

The data from the ultrastructural study suggest: 

1. THA in the dog may be associated with pulmonary microvascular injury. 

2. The magnitude of such an injury may be dependent upon the amount of fat emboli 

trapped in the pulmonary capillaries and arterioles. 

3. The pulmonary vessels, after being damaged with fat microemboli, could serve a 

role as potential initiators of the thromboembolic process within the pulmonary 

vessels. 

C. Systemic and Pulmonary Hemodynamics 

Study 

Average hemoglobin concentration (HB) did not show any significant differences 

between the groups during the experiment This indicates the relative stability of the red 

blood cell mass. Hemoconcentration with significant elevation of HB levels may be 

observed following massive trauma, such an elevation could be explained by two 

mechanisms: 

1. Massive sympathetic stimulation to the spleen and the liver with subsequent release 

of red cells into the systemic circulation; 

2. Development of pulmonary edema, due to increased pulmonary capillary 

permeability, and leakage of blood fluids into the lung interstitium. Pulmonary 
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capillary leaks have been reported during THA in man (Safwat and Dror, 1982). In 

our study, the absence of pulmonary edema was confirmed histopathologically. 

Hemoconcentration may also develop initially during massive surgical intervention 

because of blood loss, resulting in an increase in sympathetic outflow to the spleen and the 

liver. 

The systemic parameters, mean systemic arterial pressure (AoP), mean left 

ventricular pressure (LVP), myocardial contractility (DP/DT), and heart rate (HR) remained 

stable during the experiment. However, a significant drop occurred in cardiac output (CO) 

in PMM group without significant blood loss. Pooling of blood in the venous side of the 

circulatory system and decreased vascular irrqpedance in the PMM group could contribute to 

decreased CO. This observation may be supported by the following evidence: 

1. TEL^ in the canine model induced significant idtrastractural changes to the remote 

veins, but no changes were observed in the arteries (Stewart et al., 1983). These 

ultrastructural changes may also reflect functional changes, with subsequent loss of 

the venous tone and blood pooling in the venous side. 

2. Several investigators (Kepes et al., 1972; Schuh et al., 1973; Anderson and 

Stasior, 1976; Byrick et al., 1986a) have suggested a peripheral vasodilatory action 

of methylmethacrylate monomer without myocardial depression. 

3. Other investigators (Modig and Molmberg, 1975; Modig et al., 1973) have 

proposed that the peripheral vasodilation observed during THA may be due to the 

release of thromboplastic products into the systemic circulation during THA 

procedure. 

4. The most significant amount of intravascular pulmonary fat was observed in PMM 

group. This amount of fat may mechanically obstruct a portion of the pulmonary 
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vascular bed, reducing the venous return and cardiac output. However, the 

pulmonary arterial pressure did not rise significantly in PMM group to indicate a 

significant role of pulmonary vascular obstmction as the only cause for the falling 

CO, which may further indicate that the drop in CO was more likely the result of 

peripheral venodilation and venous pooling. 

In our study, CO dropped significantly in the PMM group. Byrick et al. (1986b) 

reported similar results in their dog model of bilateral THA. However, the increased 

amount of pulmonary fat emboli, resulting from the bilateral procedure, may have 

influenced their results. A significant drop in CO during THA has also been reported in 

man (Wong et al., 1977; Convery et al., 1975). Other investigators have reported no 

significant changes in CO associated with THA in man (Modig and Molmberg, 1975; 

Gooding et al., 1981; Modig et al., 1974) and in dog (Sherman et al., 1983). 

There is a general agreement in the literature (Chamley, 1970, Philips et al., 1971; 

Thomas et al., 1971) that hemodynamic instability observed during THA in man is more 

significant following the insertion of PMM and prosthesis into the femoral medullary canal 

than that observed following insertion of PMM and prosthesis into the acetabulum. This 

observation is difficult to explain on the basis of PMM absorption and toxicity, which 

would be expected to occur from both these sites (Pelling and Butterworth, 1973). In our 

study, no hypotensive episodes were encountered during the procedure with PMM or PD. 

Moreover, CO started to drop during the procedure and before insertion of PMM or PD and 

prosthesis into the femoral medullary canal. Accordingly, significant systemic monomer 

toxicity could be excluded as the sole cause for diminished venous return observed in our 

study. The more pronounced drop in CO observed in PMM group may be due to the 

release of increased amounts of tissue thromboplastic products from thermally damaged 



www.manaraa.com

112 

tissue or to the release of increased amounts of endogenous compounds from embolized 

lungs. This observation may support those of Cadle et al. (1972), Felling and Butterworth 

(1973), Gooding et al. (1981), Dandy (1973), and Modig et al. (1973), that PMM does not 

appear to have any significant direct toxicity on the cardiopulmonary functions. It is either 

the tissue thromboplastic products released during the procedure (Modig et al., 1975b), or 

the pulmonary fat embolism (Feith, 1975), or a synergistic interaction between these two 

factors that could be responsible for the hemodynamic instability observed in our study. 

The significant increase in systemic vascular resistance (S VR) in PMM group may 

be explained by the significant decrease in CO in that group, since S VR is the interaction of 

AoP and CO. Also, possible release of vasoactive endogenous compounds from the 

embolized lung, may further increase S VR in that group. The significant decrease in CO 

and increase in SVR in T2 compared to T1 for the first three groups (PMM, PD, and S S 

groups), may indicate the contribution of the surgical trauma alone in inducing such 

hemodynamic changes. 

The changes that were observed in both stroke volume (SV) and cardiac index (CI), 

are direct reflection to the changes in CO. Hypotensive episodes following insertion of 

PMM and the femoral prosthesis into the reamed femoral medullary canal have been 

reported in the literature by several investigators in man (Modig et al., 1975b; Modig and 

Molmberg, 1975; Kepes et al., 1972; Schuh et al., 1973; Modig et al., 1973) as well as 

different animal species (Breed, 1974; Pelling and Butterworth, 1973; Byrick et al., 1986). 

In our study, not one single episode of hypotension was recorded during insertion of either 

PMM or PD and the femoral prosthesis into the medullary cavity. Other investigators have 

reported similar observations to ours regarding systemic blood pressure at that stage of 

THA procedure. Sherman et al. (1983) reported no consistent or significant changes in 
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mean arterial blood pressure following insertion of PMM and the femoral prosthesis into 

the reamed femoral medullary canal of the dog. Cadle et al. (1972) reported a biphasic 

response in blood pressure following insertion of PMM and the femoral prosthesis in man. 

They observed a fall with subsequent rise in the systemic arterial blood pressure. 

Engesaeter et al. (1984) and Gooding et al. (1981) did not observe any significant changes 

in systemic arterial blood pressure in man during THA. James (1984) observed marked 

hypotension only in patients with pre-existing cardiovascular disease, and none of his 

disease-free patients showed any marked fall in systemic arterial pressure. 

Mean pulmonary arterial pressure (PAP) did not show any significant changes in 

our study. However, in PMM group, PAP showed a slight, but not significant elevation 

immediately after insertion of PMM and the femoral prosthesis into the femoral shaft, and 

again after 30 minutes. To produce a significant elevation in PAP, at least 50% of the 

pulmonary vascular bed should be obstructed (Malik, 1983). In our study, the lack of 

increase in PAP may be attributed to two mechanisms: 

1. The pulmonary arterioles and veins are highly compliant; 

2. The recruitment of additional puhnonary vessels, following embolization, 

minimizes the pressure changes. 

Histopathologically, our study did not show that high magnitude (>50%) of 

pulmonary vascular obstruction, which may further indicate that mechanism(s) other than 

pulmonary vascular obstruction alone, may be responsible for the elevated PAP 

consistendy reported in the literature during THA. Increased PAP following embolization 

is caused by active pulmonaiy vasoconstriction as well as passive mechanical obstruction . 

Several investigators have reported significant elevation in PAP following insertion of 
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PMM and femoral prosthesis in both man (Modig and Molmberg, 1975; Rinecker, 1980; 

Modig et al., 1973) and dog (Sherman et al., 1983; Byrick et al., 1986b). 

Pulmonary vascular resistance (PVR) showed a steady and gradual increase in the 

PMM group. This increase in PVR may be explained by several mechanisms: 

1. The significant decrease in CO observed in that group during the experiment; 

2. The small mechanical obstruction caused by fat emboli; 

3. Possible release of vasoactive endogenous compounds from the embolized lung, 

particularly serotonin; 

4. The slight, but not significant, increase in PAP observed in that group. 

Gooding et al. (1981) reported a steady, but not significant, increase in PVR during 

THA in man. Other investigators have reported a significant elevation in PVR during THA 

in man (Modig and Molmberg, 1975; Rinecker, 1980; Modig et al., 1973) and in dog 

(Sherman et al., 1983). 

Reflex hyperdynamic state was observed during THA. The transient elevation in 

several hemodynamic parameters that we observed during insertion of PMM or PD and the 

femoral prosthesis appears to be contradictory to the hypodynamic state consistently 

reported in the literature during THA. Pelling and Butterworth (1973) reported a sudden 

fall in systemic arterial pressure in both rabbit and cat when either PMM or plasticine (a 

control material for PMM) was inserted in the femoral medullary canal. However, they 

indicated that the pattern and timing of the acute cardiovascular changes in the cat differed 

firom tiiose in the rabbit. Breed (1974) reported similar observations in the rabbit. In both 

studies, the fall in systemic arterial pressure coincided with the elevation in the 

intramedullary pressure observed during the insertion of PMM (or the test material) and the 
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prosthesis into the femoral medullary canal. This observation was interpreted as a neural 

reflex mechanism triggered by the elevation in the intramedullary pressure. 

Sherman et al. (1983) reported that in dog, the mean arterial pressure response to 

introduction of PMM and the femoral prosthesis was varied, and no consistent or 

significant changes in blood pressure were recorded during that stage of the procedure. 

Chiray et al. (1940) reported reflex hypertension in the dog following elevation of 

the intramedullary pressure. The hypertensive response was associated with an increase in 

respiratory rate and changes in the pattern of breathing. They also suggested that the 

magnitude of hypertension may be dependent upon the level of anesthesia, the nature of the 

test substance injected in the medullary cavity, and the pressure under which it was 

injected. Animals deeply anesthetized with sodium pentobarbital did not exhibit the 

hypertensive response to increased intramedullary pressure. Also, they reported that 

injection of irritant substances under pressure into the medullary cavity resulted in 

significant hypertension. The bone marrow is supplied with sympathetic nerve fibers that 

produce vasomotor reflex effects when stimulated (Grant and Root, 1952). 

In our study, the hypertensive response which we observed following insertion of 

PMM or PD may be in agreement with Chiray et al. (1940) for the following reasons: 

1. Significant elevation in the intramedullary pressure may have resulted following 

pressurizing PMM or PD and the femoral prosthesis into the medullary cavity. 

2. The magnitude of hemodynamic changes was higher in response to PMM than to 

PD, this may be due to the irritant nature of PMM as compared to PD. 

3. Our animals were maintained under light surgical anesthesia with sodium 

pentobarbital. 
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Reflex hypertension following long bone trauma may be a compensatory 

mechanism to correct for the shock and hypotension associated with bone trauma (Chiray et 

aL, 1940). Hypertension following bone fractures has been reported before (Morton and 

KendaU, 1965). 

We are aware of two reports in the literature (Gooding et aL, 1981; James, 1984) in 

which an elevation of blood pressure, rather than a fall was reported following insertion of 

PMM and femoral prosthesis into the femoral medullary canal. In one of these reports 

(James, 1984) the elevation of the systemic arterial pressure was significant, particularly in 

patients with the least analgesia and lightest levels of anesthesia. 

Hypertension following insertion of PMM and femoral prosthesis may have not 

been frequently reported in the literature because of the domination of hypotensive 

anesthetic techniques in THA. Deliberate induction of hypotensive anesthesia for THA has 

been highly recommended (James, 1984; Davis et al., 1974; Thompson et aL, 1978). 

Hypotensive anesthesia in THA minimizes blood loss, allows a clear surgical field, and 

minimizes lamination of blood in the cement. Hypotensive anesthesia may significantiy 

depress cardiovascular reflexes, enough to inhibit any hypertensive reflexes associated with 

increased intramedullary pressure during THA procedure. Depression of hypertensive 

reflexes, in already hypotensive patients, may render these patients more susceptible to 

hypotensive episodes. Also, most of THA patients are of advanced age group and with 

pre-existing cardiopulmonary disease. Hemodynamic instability existed in our study, 

however, our experimental animals were young and healthy, and they were maintained 

under light surgical anesthesia, consequently, their cardiovascular system and reflexes were 

able to maintain cardiovascular hemodynamic parameters unchanged. 
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The difference between our results and those reported in the literature (Breed, 1974; 

Felling and Butterworth, 1973) regarding the response of the systemic arterial pressure to 

increased intramedullary pressure may be due to a) the species, age, and the status of the 

cardiopulmonary system of the experimental animal involved and/or b) the level of 

anesthesia achieved during the experiment 

The data summarized fiom the systemic and pulmonary hemodynamics study 

suggest the following: 

1. Pulmonary edema did not develop during any of our experiments. 

2. The blood loss associated with our surgical intervention was not significant enough 

to influence any subsequent changes in the hemodynamic parameters that were 

recorded during the experiment 

3. Several changes in hemodynamic parameters were encountered during THA in the 

dog with PMM. 

4. Most of these hemodynamic changes could be attributed to diminished venous 

return. 

5. PMM does not appear to have any direct significant toxicity on the cardiopulmonaiy 

functions of healthy and young dogs. 

6. The surgical trauma itself can contribute partially to some of these hemodynamic 

changes. 

7. These hemodynamic changes are well tolerated by young and healthy dogs. 

8. The hypertensive reflex observed during the procedure may have masked any 

hypotensive response to insertion of PMM and the femoral prosthesis. 
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D. Lung Mechanics and Gas Exchange Study 

The steady increase in respiratory rate (RR) for PMM group may be explained by 

the following mechanisms: 

1. It may be the result of direct afferent stimulation of vagal nerve endings in the lung 

by fat emboli (Ross, 1970), particularly J and C fibers (Malik, 1983). 

2. Increased intramedullary pressure with subsequent development of reflex 

tachypnea. Hyperventilation has been reported in man during THA 

(Rinecker, 1980). 

The steady increase in oxygen consumption (VO2) in PMM group may be explained 

by an increase in metabolic activity following trauma as well as an increase in oxygen 

utilization by the respiratory muscles to meet the demand for increased RR. 

The increase in carbon dioxide production (VCO2) observed in PMM group may be 

explained by the increased metabolic activity following trauma, increased oxygen 

consumption, and the fact that methylmethacrylate monomer is metabolized to carbon 

dioxide, through the tricarboxylic acid cycle, and removed by the lungs (Corkill et al., 

1976). These data are in agreement with a similar study in the dog (Byrick et al., 1986b). 

The steady increase in ventilation perfusion ratio (V/Q) in PMM group may be 

explained by the steady increase in RR coupled with a steady decrease in CO, resulting in 

hyperventilation of poorly perfused lung units, and the development of new lung units with 

high V/Q (Dantzker and Bower, 1982). 

Airway resistance (AWR) did not change significandy until the end of the 

experiment for both PMM and PD groups. This increase in AWR may be a direct reflection 

of airway smooth muscle constriction, and could be explained by two different 

mechanisms: 
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1. Secondary constriction through mechanical obstruction of pulmonary vessels 

(hypocapnic bronchoconstriction) (Malik, 1983; Saldeen, 1976). 

2. Release of vasoactive endogenous compounds ôom the embolized lung, 

pardculariy serotonin (Malik, 1983; Thomas et al., 1964). Increased AWR due to 

bronchial and airway constriction has been reported in man during THA (Modig 

and Molmberg, 1975; Rinecker, 1980; Modig et al., 1973; Mebius and 

Hedenstiema, 1982). 

The steady and gradual increase in the woik of breathing (WB) observed in PMM 

group may be explained by the increased resistive work associated with the tachypnea 

observed in that group (Comroe, 1974). Marked increase in WB has been reported in 

patients with post-traumatic pulmonary embolism (Blaisdell et al., 1970) 

Dynamic lung compliance (LÇ) did not change significantiy during the experiment. 

However, a biphasic response of LC was observed in PMM group. This biphasic 

response consisted of a sudden decrease following implantation of PMM and femoral 

prosthesis, followed by a return to the prc-implantation value after 15 minutes, then another 

sudden drop at 30 minutes post-implantation. This biphasic decrease in LC response 

matches exactly the biphasic increase in PAP response observed following implantation of 

PMM and prosthesis into the femoral medullary canal. This matching in response for LC 

and PAP may indicate a similar origin for both responses. The original stimulus for both 

responses could be the neural reflex observed following implantation, or the active 

compounds possibly released fix>m the embolized lung, particularly serotonin. The 

significant increase in RR observed in PMM group could ejq)lain the decrease in LC 

observed in that group. However, the increase in RR in PMM group was linear, while the 

decrease in LC was biphasic. A biphasic decrease in LC has been reported in man during 
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TEIA (Rinecker, 1980, Mebius and Hedenstiema, 1982). However, in one report 

(Rinecker, 1980), the decrease in LC was statistically significant The significance in the 

previous report could be due to the technique of statistical analysis utilized. LC in the 

previous study was calculated as a per cent change fiom the control value, which means 

that any small drop in a low value of LC may turn to be statistically significant In our 

study, values for LC was expressed as the LSM of the absolute values. Changes in LC 

have been reported following severe trauma and pulmonary embolism, and most 

investigators have attributed such changes to the release of serotonin fiom damaged lung, 

and subsequent development of bronchial constriction (Sturm et al., 1986, Halmagyi et al., 

1964, Austin and Sagel, 1972, Puckett et al., 1973). Also, the possible toxic effects of 

fiee fatty acids, released following pulmonary fat embolism, on the surfactant system, have 

been indicated (Peltier, 1969). 

E. Blood Gases Study 

Partial pressures of oxygen (Pa02) did not show any significant changes. 

However, the significant drop in CO observed in PMM group did not depress Pa02. This 

could be explained by the tachypnea and the hyperventilatory response (Philbin et al., 

1970) observed in that group. Depressed levels of Pa02 have been reported during THA in 

man (Modig and Molmberg, 1975; Mebius and Hedenstiema, 1982) and in dog (Shemian 

et aL, 1983; Byrick et al., 1986b). Contradictory results, indicating no significant changes 

in Pa02 during THA, have been reported in man (Gooding et al., 1981; Philips et al., 

1971). Modig et al. (1974) reported an insignificant increase, rather than a decrease, in 

PaQz during THA in patients receiving lumbar epidural analgesia. Elevated levels of 

arterial Pa02 have been reported following massive trauma, and they were explained by the 

hyperventilatory response associated with trauma (Modig et al., 1976). 
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The relative stability of partial pressures of carbon dioxide (PaC02) is in agreement 

with a previous study in man (Philips et al., 1971). The insignificant decrease in PaCOa 

observed in PMM group is explained by the tachypnea observed in that group. 

The hyperventilatory response observed in PMM group was reflected again in the 

increase in arterial blood pH. 

The data ôom the lung mechanics study and blood gases suggest: 

1. The changes that were observed in several respiratory parameters during THA in 

the dog were minimal. 

2. These changes were well tolerated by the young and healthy dogs. 

3. Most of these respiratory changes could be attributed to pulmonary vascular 

obstruction wi± fat emboli and subsequent release of bronchioactive compounds, 

particularly serotonin. 

F. Alveolar Lining Material (ALM) Study 

Analysis of ALM was performed for the following reasons: 

1. PMM is a potent lipid solvent, and its main route of excretion in the postoperative 

period is the pulmonary system. This means that PMM could damage the surfactant 

system during its passage through the alveolar-capillary membrane. 

2. Free fatty acids, released 6om pulmonary fat emboli during THA, could injure the 

pulmonary surfactant system. However, our analysis of ALM did not reveal any 

significant differences between the groups in any of the phospholipid components 

of ALM. The data of our ALM analysis may be explained by: 

a. The acute nature of our study, and the fact that enough existing surfactant is 

capable of maintaining alveolar stability for at least three hours post-embolization 

(Sumick et al., 1969); 
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b. The possible role of the bronchial circulation which maintains a sufficient blood 

flow to different lung units following embolization and thus preventing hypoxic 

damage to the surfactant system (Sutoick et aL, 1969); 

c. The very potent fibrinolytic system of the dog (Malik, 1983) may be capable of 

clearing the obstmcted pulmonary vessels, with resumption of adequate pulmonary 

circulation shortly after embolization. 

The data from ALM study suggest that the surfactant system is not involved in the 

acute respiratory mechanical changes associated with THA in the dog. This observation is 

in agreement with the ultrastractural study, where Type n alveolar pneumocytes were 

found to be firee fix>m any significant ultrastractural damage and loaded with dense lamellar 

bodies. 
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VI. SUMMARY AND CONCLUSIONS 

This project was designed to examine the possible development of caidiopulmonaiy 

complications that may develop during THA in the dog. The three major questions that we 

have tried to address were the nature of the cardiopulmonary changes that may develop 

during THA, the possible cardiopulmonary toxicity of PMM in the dog, and the possible 

role of the lung ûi the development of these cardiopulmonary changes. The most 

significant hemodynamic change that was observed in the PMM group was a drop in CO 

without significant changes in blood volume, myocardial contractility, or systemic blood 

pressure, indicating diminished venous return and venous blood pooling. The diminished 

venous return could be explained by venodilation induced possibly by the release of tissue 

thromboplastic products as well as endogenous compounds from embolized lungs. 

Moreover, pulmonary vascular obstraction with fat may have partially contributed to the 

depressed CO observed in that group. The specific role of each factor is unknown. A 

possible direct significant role of PMM in inducing such hemodynamic changes was 

excluded. However, some chemical and physical characters of PMM, such as the 

exothermic reaction produced during polymerizadon and its lipolytic property, may render 

its use to be associated with the release of increased amount of marrow fat contents into the 

systemic circulation. 

The presence of pulmonary fat emboli in PMM, PD, and SS groups indicates that 

pulmonary fat embolism is a consistent finding following THA in the dog and the 

orthopedic trauma alone is capable of generating pulmonary fat emboli. 

Pulmonary microvascular damage, characterized by mechanical tears, endothelial 

blebs, and platelet adhesions and degranulation, was observed in the PMM group, while 
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only mechanical tears were observed in the PD group. The magnitude of such damage 

could be attributed to the degree of pulmonary vascular embolization with fat 

The presence of pulmonary fat emboli in SS group as well as the significant 

changes that were observed in some hemodynamic parameters at the end of the surgical 

preparation of the femur and acetabulum, indicates that surgical trauma alone may partially 

contribute to the hemodynamic changes observed during THA in the dog. 

The observed changes in lung mechanics parameters and gas exchange in PMM 

group were within the physiological tolerance of the animal, and could be attributed to 

pulmonary vascular obstruction and subsequent release of endogenous compounds. 

Furthermore, the pulmonary surfactant system was found to play no significant role in the 

development of such acute changes in lung mechanics. However, the lung may play a role 

in the development of hemodynamic changes observed during THA, directly by mechanical 

obstruction of the pulmonary vascular bed with fat, and indirectly by the release of 

vasoactive endogenous compounds fiom embolized lungs. 

Healthy, young dogs were able to tolerate the hemodynamic instability that was 

observed during THA by responding with the appropriate reflexes. The depth of 

anesthesia during THA in the dog, the age of the animal, and the preoperative condition of 

the cardiopulmonary system, may all have a significant influence on the response of the 

animal with the appropriate reflexes to counteract any hemodynamic instability that may 

develop during THA. 
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Vn. RECOMMENDATIONS 

Based upon our data, we recommend the following: 

1. The risks should be evaluated before recommending THA to dogs with pre-existing 

cardiopulmonary disease and older dogs. 

2. Anesthesiologists should be aware of the fact that cardiopulmonary complications 

may develop during THA and be prepared to deal with them. 

3. Preoperative evaluations of the cardiopulmonary functions are necessary and may 

include heartworm test, chest radiogram, electrocardiogram, and arterial blood 

gases. 

4. Adequate preoperative hydration and intraoperative fluid loading are highly 

recommended to avoid the possitâlity of significant drop in cardiac output during 

the procedure. 

5. Intraoperative evaluations of cardiovascular hemodynamics (cardiac output, 

systemic arterial pressure) particularly when hemodynamic problems may be 

anticipated. 

6. Any postoperative signs of cardiopulmonary disease, if they develop, should be 

approached vigorously as a possible sign of pulmonary embolism. 
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Table Al. Percent fat per low power microscopic field in the lungs of the four 
experimental groups at the end of the experiment 

Group 

PMM TO SS C_ 

n 7 6 6 4 

14.76ab 6.44c 4.3ld 1.19 
% Fat ± ± ± ± 

3.26 1.62 1.4 0.48 

alues represent M ± SEM. 

bSigniScantly different firom the other three experimental groups (p<0.05). 

^Significandy different firom the control group (p<0.05). 

^Approaching significant difference fiom the control group (p<0.1). 
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Table A2, Average hemoglobin concentration (gm/dl) in the four experimental groups 
during the experiment 

Sampling Period 

Group n T1 T2 T3 T4 T5 T6 

PMM 9 13.05a 13.26± 13.01 12.55 12.37 12.26 
± ± ± ± ± ± 

0.14 0.14 0.34 0.34 0.34 0.34 

PD 8 13.05 13.26 12.83 12.71 12.73 12.62 
± ± ± ± ± ± 

0.14 0.14 0.36 0.36 0.36 0.36 

SS 8 13.05 13.26 13.14 13.06 12.61 12.98 
± ± ± ± ± ± 

0.14 0.14 0.36 0.36 0.36 0.39 

C 6 13.01 13.14 12.82 12.61 12.21 12.74 
± ± ± ± ± ± 

0.3 0.27 0.39 0.39 0.39 0.39 

^Values represent lSM± SELSM. 
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Table A3. Average mean systemic arterial pressure (mm Hg) in the four experimental 
groups during the experiment 

Sampling Period 

Group n T1 T2 T3 T4 T5 T6 

PMM 9 117.3a 120.5 120.1 121.1 124.9 122.6 
± ± ± ± ± ± 
2.2 2.2 3.5 3.5 3.5 3.5 

PD 8 117.3 120.5 129.3b 122.4 123.7 121.4 
± ± ± ± ± ± 
2.2 2.2 3.7 3.7 3.7 3.7 

SS S 117.3 120.5 119.7 121.6 119.4 123.5 
± ± ± ± ± ± 
2.2 2.2 3.8 3.8 3.8 4 

C 6 114 117.8 123.7 125.3 126.9 126.8 
± ± ± ± ± ± 

4.6 4.6 4.4 4.4 4.4 4.4 

^Values represent LSM ± SELSM. 

bApproaching significant difference &om PMM and SS groups at the same sampling 
period (p<0.1). 
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Table A4. Average systemic vascular resistance (mm Hg/ml/sec) in the four experimental 
groups during the experiment 

Sampling Period 

Group n T1 T2 T3 T4 T5 T6 

PMM 9 2.440a 2.969b 3.259 3.343 3.692= 3.832cd 
± ± ± ± ± ± 

.088 .088 0.207 0.207 0.207 0.207 

PD 8 2.440 2.969 3.306 3.202 3.267 3.328 
± ± ± ± ± ± 

.088 .088 0.219 0.219 0.219 0.219 

SS 8 2.440 2.969 3.319 3.486 3.510 3.407 
± ± ± ± ± ± 

.088 .088 0.219 0.219 0.219 0.234 

C 6 2.271 2.665 2.849 3.002 2.996 3.066 
± ± ± ± ± ± 

0.180 0.180 0.253 0.253 0.253 0.253 

^Values represent LSM ± SELSM. 

^Significantly different fiom the value of the same three groups at T1 (p<0.05). 

^Significantly different from the control group at the same sampling period (p<0.05). 

^Approaching significant difference fiom SS group at the same sampling period 
(p<0.1). 
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Table A5. Average mean left ventricular pressure (mm Hg) in the four experimental 
groups during the experiment 

Group n 

Sampling Period 

Group n T1 T2 T3 T4 T5 T6 

PMM 9 56.ia 53.9 55.9 56.1 58.5 56.1 
± ± ± ± ± ± 

1.9 1.9 3.2 3.2 3.2 3.2 

PD 8 56.1 53.9 59.7b 56.9 58.7 56.7 
± ± ± ± ± ± 

1.9 1.9 3.4 3.4 3.4 3.4 

SS 8 56.1 53.9 51.7 54.2 54.6 53.5 
± ± ± ± ± ± 

1.9 1.9 3.4 3.4 3.4 3.4 

C 6 53.4 55.6 52.2 54.7 53.8 54.1 
± ± ± ± ± ± 

3.9 4.3 4 4 4 4 

^Values represent LSM ± SELSM. 

^Approaching significant difference from SS group at the same sampling period 
(p<0.1). 
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Table A6. Average myocardial contractility (mm Hg/sec) in the four experimental groups 
during the experiment 

Sampling Period 

Group n T1 T2 T3 T4 T5 16 

PMM 9 2508a 2343 2397 2174 2537 2446 
± ± ± ± ± ± 

128 128 219 219 219 219 

PD 8 2508 2343 2227 2185 2276 2353 
± ± ± ± ± ± 

128 128 232 232 232 232 

SS 8 2508 2343 2118 2143 2013 1998 
± ± ± ± ± ± 

128 128 233 233 233 233 

C 6 2795 2573 2457 2257 2244 2264 
± ± ± ± + ± 

262 291 268 268 268 268 

^Values represent LSM ± SELSM. 
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Table A7. Average heart rate (beats/min) in the four experimental groups during the 
experiment 

Group n 

Sampling Period 

Group n T1 T2 T3 T4 T5 T6 

PMM 9 135a 136 134 141 146 143 
± ± ± ± ± ± 
3 3 9 9 9 9 

PD 8 135 136 150b 149 149 154b 
± ± ± ± ± ± 
3 3 9 9 9 9 

SS 8 135 136 126 132 134 132 
± ± ± ± ± ± 
3 3 9 9 9 9 

C 6 143 137 126 130 128 128 
± ± ± ± ± ± 
7 7 11 11 11 11 

3^Values represent LSM ± SELSM. 

bApproaching significant difference from both the control group and SS group at the 
same sampling period (p<0.1). 
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Table A8. Average stroke volume (ml/beat) in the four experimental groups during the 
experiment 

Sampling Period 

Group n T1 T2 T3 T4 T5 T6 

PMM 9 23a 19.4b 18.6cd 16.8C 15.7c 14.3» 
± ± ± ± ± ± 

0.7 0.7 1.3 1.4 1.3 1.4 

PD 8 23 19.4 17. ic 16= 16.4c 15.3c 
± ± ± + ± ± 

0.7 0.7 1.4 1.4 1.4 1.4 

SS 8 23 19.4 18.8C 18.lf 18.6 18.4 
± ± ± ± ± ± 

0.7 0.7 1.4 1.4 1.4 1.4 

C 6 23 21.9 22.7 21.9 21.8 21.7 
± ± ± ± ± ± 

1.4 1.4 1.6 1.6 1.6 1.6 

^Values represent LSM ± SELSM. 

bSignificandy different fiom the value of the same three groups at T1 (p<0.05). 

^Significantly different from the control group at the same sampling period (p<0.05). 

'̂ Significandy different 6om the value of the same group at T6 (p<0.05). 

^Significantly different from SS group at the same sampling period (p<0.05). 

(Approaching significant difference from control at the same sampling period 
(p<0.1). 
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Table A9. Average cardiac output (ml/min) in the four experimental groups during the 
experiment 

Group n 

Sampling Period 

Group n T1 T2 T3 T4 T5 T6 

PMM 9 3009» 2505bc 2357C 2227c 2112d 2033d 
± ± ± ± ± ± 
87 87 141 141 141 141 

PD 8 3009 2505 2412 2363 2396 2298 
± ± ± ± ± ± 
87 87 149 149 149 149 

SS 8 3009 2505 2274d 2273 22l6d 2205= 
± ± ± ± ± ± 
87 87 150 151 151 151 

C 6 3150 2854 2741 2651 2686 2655 
± ± ± ± + ± 

179 179 173 173 173 173 

^Values represent LSM ± SELSM. 

^Significantly different fiom the value of the same three groups at T1 (pcO.OS). 

^Approaching significant difference from the control group at the same sampling 
period (p<0.1). 

(^Significantly different fiom the control group at the same sampling period (pcO.OS). 
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Table A10. Average cardiac index (ml/min/m^) in the four experimental groups during the 

Sampling Period 

Group n T1 T2 T3 T4 T5 T6 

PMM 9 3774a 3149bc 3032 2846 271 Id 2572d 
± ± ± ± db ± 

104 104 198 211 198 211 

PD 8 3774 3149 2959 2902 3214 2840 
± ± ± ± ± ± 

104 104 210 210 210 210 

SS 8 3774 3149 2853d 2854 2778C 2765= 
± ± ± ± ± ± 

104 104 212 212 212 212 

C 6 3864 3547 3429 3318 3368 3330 
± ± ± ± ± ± 

213 213 243 243 243 243 

^Values represent LSM ± SELSM. 

^Significantly different from the value of the same three groups at T1 (p<0.05). 

^Approaching significant difference from the control group at the same sampling 
period (p<0.1). 

^Significantly different from the control group at the same sampling period (p<0.05). 
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Table All. Average mean pulmonary arterial pressure (mm Hg) in the four experimental 
groups during Ae experiment 

Sampling Period 

Group n T1 T2 T3 T4 T5 T6 

PMM 9 9.4a 9.4 11.5 10.4 13b 12.1 
± ± ± ± ± ± 
0.5 0.5 1.2 1.2 1.2 1.2 

PD 8 9.4 9.4 10.2 10.7 10.6 11.5 
± ± ± ± ± ± 
0.5 0.5 1.2 1.2 1.2 1.2 

SS 8 9.4 9.4 9.5 9.2 10.3 10.3 
± ± ± ± ± ± 
0.5 0.5 1.2 1.2 1.2 1.2 

c 6 9.4 10.5 10.8 11.7 12 12 
± ± + ± ± ± 
1 1 1.3 1.3 1.3 1.3 

^Values represent LSM ± SELSM-

^Approaching significant difference from SS group at the same sampling period 
(p<0.1). 
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Table A12. Average pulmonary vascular resistance (mm Hg/ml/sec) in the four 
experimental groups during the experiment 

Sampling Period 

Group n T1 T2 T3 T4 T5 T6 

PMM 9 0.184a 0.235b 0292C 0.298 0.378de 0.366f 
± ± ± ± ± ± 

0.012 0.012 0.031 0.031 0.031 0.031 

PD S 0.184 0.235 0.272 0.271 0.274 0.296 
± ± ± ± ± ± 

0.011 0.011 0.032 0.032 0.032 0.032 

SS 8 0.184 0.235 0.241 0.244 0.290 0.282 
± ± ± ± ± ± 

0.011 0.011 0.032 0.032 0.032 0.032 

C 6 0.193 0.241 0.257 0.294 0.295 0.297 
± ± ± ± ± + 

0.024 0.024 0.037 0.037 0.037 0.037 

^Values represent LSM ± SELSM. 

^Significantly different fiom the value of the same three groups at T1 (pcO.OS). 

'̂ Significantly different from the value of the same group at T5 (p<0.05). 

(^Significantly different ôom PD group at the same sampling period (p<0.05). 

^Approaching significant difference from control and SS group at the same sampling 
period (p<0.1). 

(Approaching significant difference from SS group at the same sampling period 
(p<0.1). 
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Table A13. Average respiratory rate (breath/min) in the four experimental groups during 
±e experiment 

Sampling Period 
Group n T1 T2 T3 T4 T5 T6 

PMM 9 16a 16 18 18b 2icd 246 
± ± ± ± ± ± 
1 1 2 2 2 2 

PD 8 16 16 14 14 15 17 
± ± ± ± ± + 

1 1 2 2 2 2 

SS 8 16 16 15 15 16 17 
± ± ± ± ± ± 
1 1 2 2 2 2 

C 6 16 18 18 16 16 17 
± ± ± ± ± ± 
2 2 2 2 2 2 

^Values represent LSM ± SELSM. 

bSigniScantly different from the value of the same group at T6 (p<0.05). 

^Significantly different from PD group at the same sampling period (p<0.05). 

(^Approaching significant difference from the control group at the same sampling 
period (p<0.1). 

«Significantly different from the other three groups at the same sampling period 
(p<0.05). 
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Table A14. Average oxygen consumption (ml/min) in the four experimental groups during 
the experiment 

Sampling Period 

Group n Ti T2 T3 T4 T5 T6 

EMM 9 112a 125 154b 129 153C 17ld 
± ± ± ± ± ± 
9 9 17 17 16 17 

PD 8 112 125 128 130 132 140 
± ± ± ± ± ± 
9 9 16 16 16 16 

SS 8 112 125 110 105 104 103 
± ± ± ± ± ± 
9 9 15 15 15 15 

C 6 109 107 119 122 109 112 
± ± ± ± ± ± 
19 19 19 19 19 19 

ay alues represent LSM ± SELSM. 

''Approaching significant difference from SS group at the same sampling period 
(p<0.1). 

^Significantly different from SS group (p<0.05) and approaching significant 
difference from control group (p<0.1) at the same sampling period. 

'̂ Significantly different from both control and SS group at the same sampling period 
(p<0.05). 
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Table A15. Average carbon dioxide production (ml/nain) in the four experimental groups 
during the experiment 

Sampling Period 

Group n T1 T2 T3 T4 T5 T6 

PMM 9 llOa 127 147 135 138 158b 
± ± ± ± ± ± 
7 7 17 17 16 17 

PD 8 110 127 125 126 128 138 
± ± ± ± ± ± 
7 7 15 15 15 15 

SS 8 110 127 118 107 109 109 
± ± ± ± ± ± 
7 7 14 15 15 14 

C 6 99 107 114 116 105 112 
± ± ± ± ± ± 
16 16 18 18 18 18 

^Values represent LSM ± SELSM. 

^Significantly different from SS group (p<0.05) and approaching significant 
difference Èom the control group at die same sampling period (pcO.l). 
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Table A16. Average vendiation/perfusion ratio in the four experimental groups during the 
experiment 

Group n 

Sampling Period 

Group n T1 T2 T3 T4 T5 T6 

PMM 9 1.03a 1.44b 1.72C 1.83 2.02de 2.29ef 
± ± ± ± ± ± 

0.06 0.06 0.2 0.19 0.19 0.19 

PD 8 1.03 1.44 1.47 1.49 1.53 1.79 
+ ± ± ± ± ± 

0.06 0.06 0.19 0.19 0.19 0.19 

SS 8 1.03 1.44 1.4 1.41 1.68 1.63 
± ± ± ± ± ± 

0.06 0.06 0.18 0.19 0.19 0.17 

C 6 1 1.21 1-36 1.44 1.36 1.48 
± ± ± ± ± ± 

0.14 0.14 0.22 0.22 0.22 0.22 

^Values represent LSM ± SELSM. 

^Significantly different ôom the value of the same three groups at T1 (p<0.05). 

^Significantly different from the value of the same group at T6 (p<0.05). 

(^Significantly different from the control group at the same sampling period (pcO.OS). 

^Approaching significant difference from PD group at the same sampling period 
(p<0.1). 

^Significantly different from the control group and SS group at the same sampling 
period (p<0.05). 
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Table A17. Average airway resistance (cm H20/]/sec) in the four experimental groups 
during the experiment 

Sampling Period 

Group n T1 T2 T3 T4 T5 T6 

PMM 9 2.15a 2.16 2.22 2.24 2.31 2.74b 
± ± ± ± ± ± 

0.1 0.1 0.2 0.21 0.21 0.22 

PD 8 2.15 2.16 2.36 2.25c 2.00 2.56b 
± ± ± ± ± ± 
0.1 0.1 0.21 0.21 0.21 0.22 

SS 8 2.15 2.16 2.24 2.19 2.33 2.36 
± + ± ± ± ± 
0.1 0.1 0.21 0.21 0.21 0,21 

c 6 1.91 1.92 1.84 1.71 1.84 1.90 
± ± ± ± ± ± 
0.2 0.2 0.24 0.24 0.24 0.24 

^Values represent LSM ± SELSM. 

''Significandy different from control at the same sampling period (p<0.05). 

^Approaching significant difference from control at the same sampling period 
(p<0.1). 
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Table A18. Average values for work of breathing (1 x cm H2O) in the four experimental 
groups during the experiment 

Sampling Period 

Group n T1 T2 T3 T4 T5 T6 

PMM 9 3.21a 3.66 3.89 3.92 4.44 5.28b 
± ± ± ± ± ± 

* 0.2 0.2 0.58 0.55 0.67 0.67 

PD 8 3.21 3.66 4.06 4.98b 5.03 4.05 
± ± ± ± ± ± 
0.2 0.2 0.58 0.58 0.58 0.62 

SS 8 3.21 3.66 4.25 4.51 4.23 4.38 
± ± ± ± ± ± 
0.2 0.2 0.58 0.58 0.58 0.58 

C 6 3.22 3.29 3.17 3.2 3.38 3.3 
± ± ± ± ± ± 
0.4 0.4 0.67 0.67 0.67 0.67 

alues represent LSM ± SELSM. 

^Significantly different from control at the same sampling period (p<0.05). 
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Table A19. Average dynamic lung compliance (mVcm H2O) in the four experimental 
groups during the experiment 

Group n 

Sampling Period 

Group n T1 T2 T3 T4 T5 T6 

PMM 9 48.7a 47.8 44.2 47.8 42.2 44.6 
± ± ± ± ± ± 

1.8 bo
 

3.2 3.2 3.4 3.7 

PD 8 48.7 47.8 52.8b 49.5c 48.8 49.4c 
± ± ± ± ± ± 

1.8 1.8 3.5 3.5 3.5 3.8 

SS 8 48.7 47.8 48.7 48.5 49.2 46.6 
± ± ± ± ± ± 

00
 

1.8 3.5 3.5 3.5 3.5 

C 6 45 41.2 40.9 40.5 40.5 39.3 
± ± ± ± ± ± 

3.6 3.6 4 4 4 4 

^Values represent LSM ± SELSM. 

^Significandy different from the control group (p<0.05) and approaching significant 
difference fiom PMM group (p<0.1) at the same sampling period. 

^Approaching significant difference from control at the same sampling period 
(p<0.1). 
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Table A20. Average partial pressures of oxygen ÇTorr) in the arterial blood of the four 
expeiimental groups during the experiment 

Sampling Period 

Group n T1 T2 T3 T4 T5 T6 

PMM 9 84a 83.2 83.3 82.6 82.5 82.6 
± ± ± ± ± ± 
1.6 1.8 3.4 3.7 3.4 3.4 

PD 8 84 83.2 81.8 81.9 86 83j 
+ ± ± ± ± ± 

1.6 1.8 2.9 2.9 2.9 2.9 

SS 8 84 83.2 89b 87.9 86 87.7 
+ ± ± ± ± + 

1.6 1.8 3.1 3.1 4.3 3.5 

C 6 82 80.6 79.7 81.4 80.6 82.6 
± ± ± ± ± ± 
3.4 3.1 3.4 3.4 3.4 3.4 

^Values represent LSM ± SELSM. 

''Approaching significant difference &om control at the same sampling period 
(p<0.1). 
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Table A2L Average partial pressures of carbon dioxide (Torr) in the arterial blood of the 
four expeiimental groups during the experiment 

Sampling Period 

Group n T1 12 T3 T4 T5 T6 

PMM 9 39.3a 37.3 33.8 32.9 34.1 33.5 
± ± ± ± ± ± 
0.9 0.9 1.2 1.2 1.2 1.2 

PD 8 39.3 37.3 36.5 35.8 34.9 34.1 
± ± ± 4" ± ± 

0.9 0.9 1.3 1.3 1.3 1.3 

SS 8 39.3 37.3 35.8 35.7 33.4 33.2 
± ± ± ± ± + 
0.9 0.9 1.3 1.3 1.3 1.3 

C 6 37.9 36.4 35.2 35.4 34.4 33.8 
± ± ± ± ± ± 
2.0 1.8 1.5 1.5 1.5 1.5 

^Values represent LSM ± SELSM. 
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Table A22. Average arterial blood pH in the four experimental groups during the 

Sampling Period 

Group • n T1 T2 T3 T4 T5 T6 

PMM 9 7.356a 7.364 7.387 7.395 7.383 7.390 
± ± ± ± ± 

0.006 0.006 0.009 0.009 0.009 0.009 

PD 8 7.356 7.364 7.369 7.377 7.384 7.393 
± ± ± ± ± ± 

0.006 0.006 0.010 0.010 0.010 0.010 

SS 8 7.356 7.364 7.366 7.364b 7.376 7.369= 
± ± ± ± ± ± 

0.006 0.006 0.010 0.010 0.010 0.010 

C 6 7.374 7.379 7.390 7.391 7.385 7.395 
± ± ± ± ± ± 

0.014 0.013 0.012 0.012 0.012 0.012 

^Values represent LSM ± SELSM. 

^Significantly different firom PMM group (p<0.05) and approaching significant 
difference fiom the control group (p<0.1) at the same sampling period 

^Approaching significant difference firom both control and PD group at the same 
sampling period (pcO.l). 
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Table A23. Composition of the alveolar lining material (ALM) (% of total phospholipids) 
in the four experimental groups at the end of the experiment 

ALM components  ̂

Group n PC PE PI PG PS 

PMM 7 72.61' 2.4 8.5 13.4C 2.9 
± ± ± ± ± 

1.0 0.4 0.6 0.5 0.3 

PD 6 76.6 2.4 7.4 10.6 2.9 
± ± + ± ± 

3.4 0.6 1.3 2.3 0.3 

SS 6 77.1 2.5 7.5 10.3 2.6 
± ± ± ± ± 

2.7 0.5 0.9 2.0 0.2 

C 5 73.8 3.2 8.5 11.1 3.4 
± ± ± ± ± 
2.4 0.5 1.2 0.9 0.4 

^Following is the legend of the ALM components: 
PC = Phosphatidylcholine 
PE = Phosphatidylethanolamine 
PI = Phosphatidylinositol 
PG = Phosphatidylglycerol 
PS = Phosphatidylserine 

bValues represent M ± S EM. 

^Approaching significant difference from control (p<0.1). 
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